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ABSTRACT 

This paper proposes the results of a user study on vision-

based depth-sensitive input system for performing typical 

desktop tasks through arm gestures. We have developed a 

vision-based HCI prototype to be used for our 

comprehensive usability study. Using the Kinect 3D camera 

and OpenNI software library we implemented our system 

with high stability and efficiency by decreasing the ambient 

disturbing factors such as noise or light condition 

dependency. In our prototype, we designed a capable 

algorithm using NITE toolkit to recognize arm gestures. 

Finally, through a comprehensive user experiment we 

compared our natural arm gestures to the conventional input 

devices (mouse/keyboard), for simple and complicated 

tasks, and in two different situations (small and big-screen 

displays) for precision, efficiency, ease-of-use, 

pleasantness, fatigue, naturalness, and overall satisfaction to 

verify the following hypothesis: on a WIMP user interface, 

the gesture-based input is superior to mouse/keyboard when 

using big-screen. Our empirical investigation also proves 

that gestures are more natural and pleasant to be used than 

mouse/keyboard. However, arm gestures can cause more 

fatigue than mouse. 
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INTRODUCTION 

While the field of Human-Computer Interaction (HCI) have 

always aimed to improve the interaction by making 

computers more practical and responsive to the user's 

requests, and minimizing the incompatibility between the 

human's cognitive model and the computer's ability to 

understand and respond properly [1], lately the research in 

HCI is showing a significant focus on creating interfaces 

that are more user-friendly, by applying natural 

communication and human skills in the user interface 

design. The new wave of input systems in video game 

consoles (such as Nintendo Wii, Xbox Kinect, and 

PlayStation Move) are examples of the trend toward a more 

“natural” interfaces, where computers adapt to human 

behavior rather than the other way around. Input/output 

techniques, interaction styles, and evaluation methods are 

the challenging fields of research in such gesture-based 

improvement [2]. 

With availability of in-expensive 3D cameras, many 

researchers have improved the quality of gesture-based 

systems by incorporating depth information as well as 

employing robust computer vision methods such as those 

provided by toolkits like OpenCV. On the other hand, a 

consolidated and reliable usability analysis has not been 

fulfilled for gesture-based input systems to see how and 

where they can be used. This paper is based on a prototype 

that combines a 3D camera with advanced vision software, 

and offers a novel study of usability of such system in 

performing common desktop tasks like accessing files, 

opening and resizing windows, etc. The study has 

considered a variety of factors such as complexity of tasks, 

screen size, and human factors like pleasantness, fatigue, 

and naturalness. 

RELATED WORK 

Technical  

Recent studies have demonstrated that hand gesture systems 

are not only technical and theoretical in nature but are also 

very practical since they can be implemented into numerous 

types of application systems and environments. For 

example, Ahn et al. [3] developed a method for virtual 

environment slide show presentations.  

Another example is the study by Jain [4], which describes a 

way to estimate hand poses for mobile phones that only 

have one pointing gesture based on a vision-based hand 

gesture approach. The sign language tutoring tool 

developed by Aran et al. [5] is also very practical because it 
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is designed to interact with users to teach them the 

fundamentals of sign language [6].  

Several researchers have conducted similar studies in 

tracking, such as the Viola-Jones-based cascade classifier, 

which is typically used for face tracking in rapid image 

processing [7,8] and is regarded as more robust in pattern 

recognition against noise and lighting conditions [9]. Other 

researchers have shown that cascade classifiers can also be 

utilized to recognize hands and various parts of the human 

body [9,10,11,12,13].  

In order to detect gestures, Marcel et al. [14] proposed a 

method of hand gesture recognition based on Input-Output 

Hidden Markov Models that track variations in the skin 

color of the human body. Similarly, Chen et al. [15] applied 

the hidden Markov model in training method to enable 

systems to detect hand postures, even though it is more 

complex than Cascade classifiers in training hand gestures.  

A simple Human-Computer Interactive system that could 

detect predefined hand gestures for the numbers 0 to 6 was 

proposed by Liu et al. [6]. This system could better 

implement the Number Input Management in Word 

documents. The AdaBoost algorithm was revised and used 

to automatically recognize a user’s hand from the video 

stream, which is based on Haar-like features as a 

representation of hand gestures. A Multi-class Support 

Vector Machine was employed  to train and detect  the hand 

gesture based on Hu invariant moments features and the 

Human Computer Conversation was then implemented for 

hand gesture interaction instead of a traditional mouse and 

keyboard.  

The other research, by Yu et al. [17], proposes a hand 

gesture feature extraction method (with a dataset of 3500 

images) that employs multi-layer perception. By binarizing 

the image and enhancing the contrast, the silhouette and 

distinct features of the hand are accurately and efficiently 

extracted from the image. The Gauss-Laplace edge 

detection approach has been utilized to get the hand edge. A 

feature vector that can recognize hand gestures is developed 

from combinational parameters of Hu invariant moment, 

hand gesture region and Fourier descriptor.  

In above mentioned related works, accuracy and usefulness 

of gesture recognition software have remained a 

challenging issue. Noise, inconsistent lighting, items in the 

background, distinct features, and equipment limitations 

can also be named as the constraints associated with some 

of those image-based gesture recognition systems. 

Technological incompatibility may also cause difficulties in 

the general usage to match various image-based gesture 

recognition systems. For instance, a calibrating algorithm 

for one camera might not work properly for another 

different camera. Kinect camera uses some more stable 

methods and very useful techniques such as: background 

removal, image segmentation, depth and connectivity 

detection, and hand gesture recognition. Last but not least, 

Kinect also works well in an extensive variety of lighting 

conditions which itself helps in reducing the need for a high 

power of CPU. Having all these features enables Kinect to 

simulate a number of controllers properly. Using Kinect 

unit enables us to identify the depth of every single pixel in 

the frame and ultimately conserve the developing (no need 

for making samples and efforts in training, and testing 

sessions) and running time comparing to the learning-based 

traditional methods that have been used in the above 

mentioned related works. Moreover, applying a depth 

thresholding removes the wrist and its unwanted defects 

from the depth map, based on Z (creates a binary image). 

Cropping the wrist out of the frame can also help in 

improving accuracy. On the other hand, OpenNI and NITE 

secure the system with a high stability and efficiency by 

decreasing the effect of ambient disturbing factors such as 

noise and improper light conditions. In addition, 

programming with NITE provides some gesture detector 

options, e.g. Velocity or Angle features in a push detector 

in order to make a desirable setting for the push gesture 

recognition. 

Usability  

As for the multimodal interfaces, Cabral et al. [18] discuss 

numerous usability issues associated to the use of gestures 

as an input mode. A simplistically strong 2D computer 

vision based gesture recognition system was introduced by 

the authors and was successfully used for interaction in VR 

environments. Three different scenarios were employed to 

test the interface: as a regular pointing device in a GUI 

interface, as a navigation tool, and as a visualization tool. 

Their results illustrated that it is more time consuming, as 

well as more fatiguing to complete simple pointing tasks 

than using a mouse. However, several advantages are 

revealed by the use of gestures as a substitute in multimodal 

interfaces. These include immediate access to computing 

resources using a natural and intuitive way, and that 

balances properly to joint applications, where gestures can 

be used infrequently. 

A proposition by Villaroman et al. [19] suggests that using 

Kinect to classroom training on natural user interaction 

creates a prospect and innovative method. Examples are 

presented to demonstrate how Kinect-assisted instruction 

can be utilized to accomplish certain learning results in 

Human Computer Interaction (HCI) courses. Moreover, the 

authors have confirmed that OpenNI, in addition to its 

accompanying libraries, are adequate and beneficial in 

enabling Kinect-assisted learning activities. For students, 

Kinect and OpenNI offer a hands-on experience with its 

gesture-based, natural user interaction technology. 

In a study on 3D applications using Kinect, Kang et al. [20] 

introduced a control method that naturally regulates the 

application with the use of distance information and joints’ 

location information. Furthermore, the recognition rate was 

more successful, as well as the use of the proposed gestures 



in the 3D application, which was 27% quicker than a 

mouse. 

Code Space, introduced by Bragdon et al. [21], is a system 

that combines touch + air gesture hybrid interactions to 

jointly carry small developer group meetings. This method 

enables access, control and sharing of information through 

several different devices such as multi-touch screen, mobile 

touch devices, and Microsoft Kinect sensors. In a formative 

study, professional developers were positive about the 

interaction design, and most felt that pointing with hands or 

devices and forming hand postures are socially acceptable. 

A gesture user interface application, Open Gesture, is 

available for standard tasks, for instance making telephone 

calls, operating the television, and executing mathematical 

calculations. This prototype uses a television interface to 

carry out various tasks by using simple hand gestures. 

Based on a usability evaluation, Bhuiyan and Picking [22], 

recommend that this technology can improve the lives of 

the elderly and the disabled users by creating more 

independence while some challenges still remain to be 

overcome. 

During a study, on touch-free navigation through 

radiological images, analyzed by Ebert et al. [23], ten 

medical professionals tested the system by rebuilding a 

dozen images from a CT data. The experiment measured 

the response period and the practicality of the system 

compared to the mouse/keyboard control. An average of ten 

minutes was required for the participants to be at ease with 

the system. The response time was 120 ms, and the image 

recreation time using gestures was 1.4 time longer than 

using mouse/keyboard. However it does remove the 

potential for infection, for both patients and staff.  

In a usability study, in order to have more accurate results, 

it is suggested to design a simple and minimalistic as 

possible simulated desktop interface with neutral colors to 

reduce user error or bias, while focusing on common 

desktop tasks to be relatively general. Moreover, we believe 

that studying more features in a usability study than those 

have been studied in above mentioned related works 

develops the models and theories of interaction. 

METHODOLOGY 

Our research aims as verifying the following hypothesis: 

On a WIMP (Windows, Icons, Menus, Pointers) user 

interface, the gesture-based input is superior to 

mouse/keyboard when using with a big-screen, but not on a 

small screen. In order to verify this hypothesis, we (1) 

designed a simple yet effective simulated WIMP interface, 

(2) defined a set of criteria for evaluation, (3) selected 

natural gestures, (4) implemented a gesture recognition 

engine, and (5) performed usability studies. 

User Interface and Gesture Recognition Modules 

This project uses a simulated WIMP interface. The design 

is kept as simple and minimalistic as possible, with neutral 

colors to reduce user error or bias (Figure 1). The simulated 

desktop includes icons with operations such as selecting, 

opening/closing, moving and resizing.  

 

Figure 1. User interface. 

Tables 1 and 2 show our chosen gestures and their 

corresponding mouse/keyboard events. We have used a 

combination of Kinect sensor, OpenCV, Allegro graphics 

library, OpenNI, and NITE to create the simulated desktop 

interface and interact with users. 

Processes Arm 

Selecting/Running/Closing 

Hand pushing 

 

Moving curser 

Hand moving 

 

Grabbing/Resizing 

Hand circling 

 

Table 1. Final design for arm/hand set. 

Arm Gestures Mouse Actions 

Push Dbl-click Run/close objects 

Circle + move + 

push 
Drag & drop Move/resize 

Table 2. Arm gestures’ definitions, mouse analogies, and 

actions. 

The details of the gesture recognition engine are not within 

the scope of this paper that is focused on usability study. 

Figure 2 illustrates our gesture-based UI algorithm. 



 
Figure 2. The algorithm controlling UI using arm gestures 

recognition. 

User Experiments  

In our usability experiments we have focused on common 

desktop tasks to be relatively general, and have included 

ratings by typical university users and also objective 

measures by observation, such as number of trials, errors, 

etc. 

The experiment process has the following sessions: 

Training session  

Training consists of thirty minutes of practicing the 

"simple" tasks, including selecting desktop objects (icons 

and windows), opening and closing, moving and resizing. 

Complex tasks are combination of 5 simple ones through a 

script. 

Test session  

Test sessions include two tasks (simple and complex), two 

devices (mouse and gesture), and two types of screen 

(desktop and big-screen), i.e. eight units.  

Questionnaire and observation 

During the test sessions the users are requested to rate their 

satisfaction on a scale of 1 to 5 (1 for absolutely unsatisfied 

and 5 for extremely satisfied) on eight respective task 

tables, and to answer some extra questions on the 

questionnaire while the testing persons measure the 

observations. 

RESULTS AND DISCUSSIONS 

This study is conducted using 20 participants (10 males and 

10 females) and in the age range of 11 to 40 (average of 29 

years old). Nineteen participants were right-handed and one 

was left-handed.  

Hypotheses and Analyses 

For the different factors being studied, 3-way repeated 

analysis of variances (ANOVA) is carried out for three 

independent variables:  

1- Difficulty (simple task vs. complex task)  

2- Input device (mouse vs. arm gestures) 

3- Output device (desktop vs. big-screen)  

All analysis are concluded at p < 0.05 significance level and 

for 20 participants. Our ANOVA analysis is accompanied 

by an extra t-test analysis particularly for naturalness and 

fatigue. This redundancy is carried out in order to confirm 

our multi-factor analysis with a single-factor analysis. The 

results of the t-test support the ANOVA analysis. 

Notation: In the following analyses, we show the mean and 

standard deviation for different variables in the forms of 

Mvariable (e.g. Msimple is the mean for simple task) and 

SDvariable (e.g. SDgesture is the standard deviation for arm 

gestures). Moreover, F(df,MS) is the test statistic (F-ratio) 

in which df and MS are the degree of freedom and mean 

square respectively for the variables (within variables when 

more than one, and within subjects). The F-ratio is 

calculated using MSvariable(s)/MSerror(s) and P is the 

probability value. 

Time (duration of test session): 

Hypothesis- using a mouse is faster than using arm gestures 

as inputs. 

The analysis illustrates that for variable 1, F(1,2504.306) = 

66.994, P = 0.0000 (Msimple = 17.83, SDsimple = 7.67 vs. 

Mcomplex = 25.74, SDcomplex = 9.80). This illustrates that task 

complexity has significant effect on time. This effect is as 

expected since the two tasks were initially designed to 

illustrate different difficulty levels for using the system. 

 

Figure 3. Temporal MAX/MIN/MEAN/ST DEV facts 

(D≡desktop, B≡big-screen). 

For variable 2, F(1,3820.070) = 41.163, P = 0.0000 (Mmouse 

= 16.90, SDmouse = 7.0868 vs. Mgesture = 26.67, SDgesture = 

9.3749), which implies that using gestures also has 

significant effect on time. For variable 3, F(1,10.404) = 

0.646, P = 0.4316 which illustrates that the screen type does 

not have a significant effect on time. Moreover, the analysis 

shows no significant effect on time for variables 1 and 2 

combined F(1,29.929) = 1.371, P = 0.2562, variables 1 and 

3 combined F(1,28.392) = 1.641, P = 0.2156, and finally 

variables 2 and 3 combined, F(1,37.056) = 1.131, P = 

0.3008. Combination of the three variables (1, 2, and 3) 

F(1,0.121) =  0.006, P = 0.9370 also do not show any 

significant effect on time. Based on the above, the initial 

hypothesis is confirmed meaning gesture inputs are 

significantly slower than using a mouse (as shown also in 

Figure 3).  



Easiness (how easy to interact with the UI): 

Hypothesis- Using arm gestures as inputs is easier than 

mouse. 

Analyzing the feedback from participants regarding 

easiness of experiments given the 3 variables defined earlier 

shows that the only significant effect is caused by variable 

2, F(1,19.600) = 23.059, P = 0.0001 (Mmouse = 4.3750, 

SDmouse = 0.8325 vs. Mgesture = 3.6750, SDgesture = 0.9517). 

This means that according to participants, the only variable 

with significant effect on easiness is the input device 

(mouse vs. gesture). For variable 1, F(1,0.100) = 0.134, P = 

0.7181 and for variable 3, F(1,1.225) = 2.730, P = 0.1149. 

For combination of variables 1 and 2, F(1,0.100) = 0.409, P 

= 0.5303, variables 1 and 3, F(1,0.225) = 0.371, P = 0.5497, 

variables 2 and 3, F(1,4.225) = 4.219, P = 0.0540, and 

finally for variables 1, 2, and 3, F(1,0.225) = 0.609, P = 

0.4449 which indicates that there is no significant effect. 

According to the provided statistics, the initial hypothesis is 

rejected which indicates that using a mouse is significantly 

easier than using arm gestures. 

Fatigue (how fatiguing to interact with the UI): 

Hypothesis- Using arm gestures produces more fatigue 

compared to mouse. 

In this experiment the participants have been asked to rank 

higher if more fatigue is experienced. The feedback 

obtained from participants indicates that similar to easiness, 

variable 2 is the only one with significant effect F(1,45.156) 

= 31.813, P = 0.0000 (Mmouse = 1.4000, SDmouse = 0.7730 vs. 

Mgesture = 2.4625, SDgesture = 0.9929). This indicates that the 

input device is the only determining parameter in fatigue. 

For variable 1, F(1,1.406) = 3.065, P = 0.0961 and for 

variable 3, F(1,0.506) = 1.351, P = 0.2595 respectively. For 

combination of variables 1 and 2, F(1,0.006) = 0.015, P = 

0.9050, variables 1 and 3, F(1,0.006) = 0.018, P = 0.8949, 

variables 2 and 3, F(1,0.756) = 0.657, P = 0.4276, and 

finally variables 1, 2, and 3, F(1,0.756) = 1.322, P = 0.2645. 

Based on the above mentioned figures, the initial 

hypothesis is approved, meaning arms gestures significantly 

causes more fatigue compared to using a mouse. Table 3 

shows an extra t-test analysis for fatigue which supports the 

ANOVA analysis. 

Phase 
Mean 

Mouse        Arm 
p-value 

Simple/Desktop 1.10            2.45 3.756e-06 

Simple/Big-screen 1.5              2.3 0.002506 

Complex/Desktop 1.45            2.50 0.002502 

Complex/Big-screen 1.55            2.60 0.002173 

Table 3. Fatigue and results of t-test. 

Naturalness (how natural/intuitive to interact with the UI): 

Hypothesis- Using arm gestures is more natural than using 

a mouse. 

For this factor, none of the variables shows any significant 

effect. 

The calculated statistical values for variable 1, F(1,0.000) = 

0.000, P = 1.0000, for variable 2, F(1,10.000) = 4.153, P = 

0.0557, and for variable 3, F(1,0.225) = 0.851, P = 0.3679. 

These results indicate that variables 1, 2, and 3 do not have 

any significant impact on naturalness of tasks. However, 

combination of variables 2 and 3 show significant effect 

F(1,5.625) = 6.628, P = 0.0186 (Mmouse-desktop = 3.4500, 

SDmouse-desktop = 1.1082, vs. Mmouse-bigscreen = 3, SDmouse-bigscreen 

= 1.1983, vs. Mgesture-desktop = 3.5750, SDgesture-desktop = 0.9306, 

vs. Mgesture-bigscreen = 3.8750, SDgesture-bigscreen = 0.8530). This 

means that the input device when combined with a 

particular output device will show significant effect on 

naturalness. Multiple one-way ANOVAs further indicate 

that mouse when used on desktop is significantly more 

natural than mouse used on big-screen. Moreover, gestures 

used on big-screen are significantly more natural than 

mouse used on both desktop and big-screen. Combination 

of variables 1 and 2, F(1,0.400) = 0.910, P = 0.3520, 

variables 1 and 3, F(1,0.225) = 0.533, P = 0.4744, and 

finally variables 1, 2, and 3 , F(1,0.625) = 1.067, P = 

0.3145, show no significant effect. According to the above 

mentioned figures, the hypothesis is rejected, meaning arm 

gestures as inputs do not feel significantly more natural 

compared to mouse. However, it is shown that using arm 

gestures on big-screen is significantly more natural than 

using a mouse on both the desktop and the big-screen. 

Table 4 shows an extra t-test analysis for naturalness which 

supports the ANOVA analysis. 

Phase 
Mean 

Mouse        Arm 
p-value 

Simple/Desktop 3.30            3.65 0.2804 

Simple/Big-screen 3.05            3.90 0.006697 

Complex/Desktop   3.6             3.5 0.7647 

Complex/Big-screen 2.95           3.85 0.01963 

Table 4. Naturalness and results of t-test. 

Pleasantness (how pleasant to interact with the UI): 

Hypothesis- Using arm gestures as inputs is more pleasant 

than using mouse. 

When analyzing the participant feedback for pleasantness, a 

similar trend to that of naturalness is observed. Variable 1, 

F(1,0.006) = 0.016, P = 0.9020, variable 2, F(1,6.806) = 

3.824, P = 0.0654, and variable 3, F(1,0.506) = 1.351, P = 

0.2595 show no significant effect. Combination of variables 

1 and 2, F(1,1.056) = 3.055, P = 0.0966, variables 1 and 3, 

F(1,0.306) = 1.347, P = 0.2601, and variables 1, 2, and 3, 

F(1,0.506) = 1.572, P = 0.2251 show no significant effect as 

well. Similar to naturalness, the only set of variables which 

illustrate an effect are combination of factors 2 and 3, 

F(1,8.556) = 7.716, P = 0.0120 (Mmouse-desktop = 3.7250, 

SDmouse-desktop = 0.9868 vs. Mmouse-bigscreen = 3.1500, SDmouse-



bigscreen = 1.0266, vs. Mgesture-desktop = 3.6750, SDgesture-desktop = 

0.8590, vs. Mgesture-bigscreen = 4.0250, SDgesture-bigscreen = 

0.8317). Therefore there is significant interaction between 

input and output device when pleasantness is being 

analyzed. Multiple one-way ANOVAs further indicate that 

mouse when used on desktop is significantly more pleasant 

than mouse used on big-screen. Furthermore, arm gestures 

used on big-screen is significantly more pleasant than 

mouse used on desktop, mouse used on big-screen, and arm 

gestures used on desktop. 

Based on these results, similar to naturalness, the initial 

hypothesis is rejected. But again, it is revealed that the 

hypothesis does hold true on big-screens, meaning using 

arm gestures is significantly more pleasant than mouse 

when performed on big-screens. Also it is shown that arm 

gestures used on big-screen is significantly more pleasant 

compared to when it is used on desktop. 

Overall Satisfaction (how overall satisfactory to interact with 
the UI): 

Hypothesis- Overall, using arm gestures as inputs is a more 

popular experience compared to mouse. 

In the overall ranking obtained from participants, no 

particular variable shows significant effect. This can be due 

to the fact that while some parameters such as naturalness 

are ranked higher for gesture on the big-screen, the fatigue 

level is increased at the same time. This experience, we 

believe leads to an overall insignificant ranking. The 

calculated values are as follows: For variable 1, F(1,0.006) 

= 0.019, P = 0.8928, for variable 2, F(1,0.306) = 0.341, P = 

0.5662, and for variable 3, F(1,0.306) = 0.721, P = 0.4063. 

Similarly for combination of variables, no effect is 

observed since for variables 1 and 2, F(1,0.156) = 0.704, P 

= 0.4120, variables 1 and 3, F(1,0.006) = 0.022, P = 0.8833, 

variables 2 and 3, F(1,3.906) = 4.249, P = 0.0532, and 

finally for all three variables 1, 2, and 3, F(1,0.006) = 0.035, 

P = 0.8531. Based on this analysis, the hypothesis is 

rejected, meaning neither input hold a significant popularity 

over the other. 

Hypotheses Verification 

According to the provided statistical analyses, we 

summarize our hypotheses verification as follows:  

The time and the fatigue factors analyses support our initial 

hypotheses, meaning gesture inputs are significantly slower 

and more fatiguing than using a mouse. The initial 

hypotheses for the easiness and overall satisfaction factors 

are rejected which indicate that using a mouse is 

significantly easier than using arm gestures while neither 

inputs hold a significant popularity over the other. For the 

naturalness and the pleasure factors, the hypotheses are 

rejected as well, meaning arm gestures as inputs do not feel 

significantly more natural or more fun to use compared to 

mouse. However, it is revealed that using arm gestures on 

big-screen is significantly more natural and more pleasant 

than using a mouse on both the desktop and the big-screen. 

Also it is shown that arm gestures used on big-screen is 

significantly more pleasant compared to when it is used on 

desktop. 

Extra Observations 

Timing: 

Using mouse on big-screen is slower than on desktop. As 

expected, due to not being familiar with controlling a UI 

using gestures, the result with mouse is faster than with 

gestures. However, we believe that having more practice 

and getting used to the gesture application, allows the users 

to perform the tasks almost as fast as using a mouse. 

Satisfaction: 

Most of the participants preferred “equally use of mouse 

and gesture” as a combination of gesture and mouse inputs. 

 

Figure 4. Satisfaction comparison (s≡simple, c≡complex, 

m≡mouse, g≡gesture, d≡desktop, b≡big-screen). 

Figure 5. Best/Worst satisfactions (s≡simple, c≡complex, 

m≡mouse, g≡gesture, d≡desktop, b≡big-screen). 



As shown in Figures 4 and 5, doing simple-task with 

gestures on desktop caused more fatigue than on big-screen, 

although it is reverse in doing complex-task. Performing 

simple-task, using mouse on desktop is the easiest and the 

lightest (least fatigue) and on big-screen is the least pleasant 

and the least overall satisfactory, while using gestures on 

big-screen is the most natural, and the most pleasant. In 

addition, the complex-task using gestures on desktop is the 

most difficult and the least overall satisfactory. In other 

words, a short time usage of mouse on big-screen, and a 

long term usage of gesture on desktop have the least 

popularity from users’ feedback. Doing complex-task, using 

mouse on desktop is the most overall satisfactory and on 

big-screen is the least natural, while using gesture on big-

screen is the heaviest (most fatigue). 

Based on the results, opening a window (Running action) 

using gesture was the easiest task overall.  

This study compared arm gestures with mouse/keyboard in 

two different settings (desktop and large-scale displays), 

and two different task difficulties (simple and complex). 

Based on the participants’ feedback, multimodal UI makes 

more attentive and immersive than the conventional UI. 

There are still remaining issues to solve such that users feel 

fatigue while using arms in the air.  

CONCLUSION 

A new gesture-based interface has been presented and 

compared with traditional input systems for typical desktop 

tasks. Through an efficient implementation using Kinect 3D 

camera and computer vision software libraries, and with 

comprehensive user experiments, we compared our defined 

arm gestures to the conventional input devices 

(mouse/keyboard), in two different settings (desktop and 

big-screen displays), and during two sets of tasks (simple 

and complex) for precision, efficiency, easiness, 

pleasantness, fatigue, naturalness, and overall satisfaction to 

verify the following hypothesis: the gesture-based input is 

superior to mouse/keyboard when using big-screen. Our 

experiment has analytically showed that using gestures on a 

big-screen display is more natural and pleasant than using a 

mouse/keyboard in a HCI. On the other hand, arm gestures 

are more fatiguing than mouse.  

There are a few efforts that can be undertaken to improve 

our prototype system. The current prototype only supports 

single hand gestures for interaction. Hence, multiple hands 

gesture interaction can be proposed in order to have more 

gestures available, reduce the error rate, and ultimately 

increase the accuracy, speed rate, and user satisfaction, 

while more hand postures will be selected to support the 

controlling activities. However, a robust approach in hand 

gesture recognition is necessary since the multiple hands 

increase the computational costs and complexity of the 

system. Using other types of body gestures and studying 

other types of tasks are among our objectives for further 

research. 
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