
Affective Walkthroughs and Heuristics:
Evaluating Minecraft Hour of Code

Reza GhasemAghaei, Ali Arya, and Robert Biddle

School of Computer Science,
Carleton University
Ottawa, Canada

{Reza.GhasemAghaei,Ali.Arya,Robert.Biddle}@carleton.ca
https://hotsoft.carleton.ca/

Abstract. This paper presents an evaluation of Code.org’s Minecraft
Hour of Code that was created to encourage and support people initial
learning of computer programming. In particular, this web-based soft-
ware uses a spatial model world, where the learner’s programs manipu-
late the world. We applied the Affective Walkthrough and the Affective
Heuristic Evaluation, proposed evaluation methods for affective learning
in multimodal educational software. Our findings provided illumination
about the Minecraft Hour of Code approach, highlighting some aspects
that are successful, and others where improvement appears necessary. We
also gained insight about the evaluation methods and their effectiveness.

Keywords: education software; evaluation; affective learning; spatial environ-
ments

1 Introduction

This paper presents an evaluation of Code.org’s Minecraft Hour of Code. The
software was created to encourage and support people initial learning of com-
puter programming. In particular, this web-based software uses a spatial model
world, where the learner’s programs manipulates the world. We applied the Af-
fective Walkthrough and the Affective Heuristic Evaluation proposed earlier [4]
and refined with the previous case studies [5,6]. Our previous studies were con-
ducted with participants to refine our methods, and inform us about the col-
laborative processes. In this new study, we simply applied this knowledge and
conducted the evaluations ourselves. Our findings provided illumination about
the Minecraft Hour of Code approach, highlighting some aspects that are suc-
cessful, and others where improvement appears necessary. We also gained insight
about the evaluation methods and their effectiveness.

Code.org is a non-profit organization that encourages learning of computer
science, especially programming and computation thinking. It’s “Hour of Code”
is an initiative that emphasizes short introductory tutorials aimed at total begin-
ners, and has been widely used, claiming almost 100 million learners, including
US President Barack Obama [14].



2 Affective Walkthroughs and Heuristics

The Hour of Code approach is strongly visual in nature, both for the program
itself, and for what the program does. This is reasonable, as it is established that
such visual environments might assist in novice engagement, and also support
them demonstrate skills and strategies in a familiar or easily understood context
[1].

Fig. 1: The initial interface of the Minecraft Hour of Code tutorials.

One aspect of Hour of Code’s visual nature relates to the program itself, and
it uses a variant of the “jigsaw” or “block” approach used in Scratch [11], Alice [2]
and other learning systems. The other aspect is the spatial model world, where
such worlds include graphical elements that serve as integral parts of a computa-
tional context, problem, and solution. The Hour of Code tutorials include many
variants of this, for example including ones resembling many popular games, e.g.
“Angry Birds”, “ Plants vs. Zombies”. In this paper we focus on the “Minecraft”
variant — see Figures 1 and 2. This is of special interest because Minecraft itself
involves programming as a core part of the appeal of the “game”.

Our interest is in affective learning in multimodal educational software, fo-
cusing on the emotional elements in the software. This reflects calls for more
attention to emotion in the domain of Human-Computer Interaction (HCI) and
education [15]. In this paper we present our application of two such methods,
the affective walkthrough and the affective heuristic evaluation proposed earlier
to the Hour of Code Minecraft software.

2 Overview of Hour of Code Minecraft

The Hour of Code Minecraft tutorial was developed to engage students in learn-
ing programming. It introduces players to basic programming concepts, allowing
them to navigate, mine, craft, manipulate and explore in a 2D Minecraft world
by plugging together blocks to complete all actions and generate computer code.

The system provides a sequence of tutorials, illustrated by a horizontal line
with nodes representing each tutorial step, as shown in Figure 1.



Affective Walkthroughs and Heuristics 3

Fig. 2: The Hour of Code Minecraft interface, with model world on the left, and
the program on the right.

For each tutorial, the learner uses an interface such as shown in Figure 2. On
the left top is the model world (“play space”), resembling the rectilinear blocks
as used in the full Minecraft game, representing objects such as grass, trees,
sheep, etc. On the left bottom is a panel with instructions to the learner. When
a learner begins the tutorials, they select an avatar, either “Alex” or “Steve”.
The chosen avatar then appears in the model world, and the program controls
their actions within the world.

On the right is an area consisting of a “toolbox” of jigsaw-like pieces, and a
“workspace”. The pieces in the toolbox are for simple statements or commands,
as well as loop (“repeat”) and conditional (“if”) statements, and the shape of
the pieces shows how they connect with other pieces. These can be copied and
dragged into the workspace, and assembled in sequence to form programs.

When assembled, the jigsaw pieces do resemble traditional (textual) code,
and in most Hour of Code this is the only code shown. In the Minecraft tu-
torial, however, whenever a tutorial step is completed satisfactorily, a pop-up
window shows the equivalent code in JavaScript, which is what is actually used
to program Minecraft.

In Hour of Code Minecraft, the tutorial steps reflect teaching and learning
goals, in sequence. The sequence is fairly traditional, beginning with sequences
of commands, moving on to loops, and then conditional structures. At first, the
introduction is strongly guided, and then more freedom allowed to encourage a
program solving approach.

In the interface and the tutorial steps, several modalities are involved. Firstly,
the interface is graphical and spatial, with the model world and the jigsaw piece
program. The character of the graphics is appealing, with a coarse lo-fi and fun
game-like appearance that might help engagement. Secondly, the model world
suggests a “world of action”, like a board game, where the blocks might be moved



4 Affective Walkthroughs and Heuristics

and interact. Thirdly, and related, is that the tutorial instructions build narrative
elements where the player’s avatar should accomplish goals by moving and acting
in the model world. Over the sequence of the steps, these build into an overall
story. This approach would appear to help learner motivation, understanding,
and possibly supporting reflection and creativity about what other possibilities
might be programmed. Finally, there are audio elements with calm background
music and occasional effects to emphasize events.

3 Minecraft Hour of Code and Affective Walkthrough

The affective walkthrough proposed earlier [4] was based on Wharton et al.’s
cognitive walkthrough [13], and Dormann and Biddle’s affective walkthrough [3].
Following case studies, it was refined [6] to de-emphasize normal usability issues,
and to acknowledge the contextual role of teaching goals and potential modality
benefits. It follows Kort et al.’s affective model [7]. This identifies four phases
of learning and the affective character of each. The first phase is encouraging
exploration with positive affect. The second phase introduces challenges, and
negative affect is expected. The third phase is to support overcoming challenges
and reduce the negative affect, and the fourth phase is to affirm learning and
restore positive affect.

3.1 Method

As with the earlier cognitive walkthrough by Wharton et al., the main idea is to
select user tasks and then step through the software considering key questions,
and making notes and observations, as shown in Table 1. The walkthrough was
conducted by us, role-playing evaluators. We used a large screen display to col-
laborate in the same manner as done by participants described in [6].

The Affective Walkthrough (Version 3)
1 What is the learning goal of this task?
2 Where in the affective cycle of learning is this task? (i.e. exploring, challenging,
overcoming, and affirmation)

3 Is the appropriate affective support provided?
4 Does the affective support work as intended?

Table 1: The Affective Walkthrough (Version 3).

The objective of our study was to evaluate affective learning in Hour of Code
Minecraft tutorials, with special attention to the supporting modalities involved.
We presented, above, the basic design of the tutorials and the interfaces, and
identified the modalities involved and their potential benefits. We then outlined
the basis of the affective walkthrough, and the steps involved.



Affective Walkthroughs and Heuristics 5

To select the tasks, we simply used the Hour of Code Minecraft tutorial
steps, although we grouped the 14 steps into 4 larger tasks, bringing together
steps that had strongly related educational purposes.

We then followed the walkthough as shown in Table 1, and considered each
question in turn. We made Walkthrough Evaluation Sheets to record our answers
and related observations. In the section below, we review the nature of the taskes,
and the results of our walkthroughs.

3.2 Findings
First Task To begin, we select a character. We have two choices, e.g. we can pick
either Alex or Steve. The first task is about “commands”. The steps are shown
in Table 2 and the results of the walkthrough are shown is Table 3.

First Task: Command Sequences
1 Add a second “move forward” command to reach the sheep.
2 Then walk to the tree and use the “destroy block” command to chop it down
3 Use the “shear” command to gather wool from both sheep.
4 Cut down all trees.

Table 2: First task: walk around.

By completing the first part of Task 1, the software gave emotional feedback
such as happy sounds, a jumping character, green highlight on the achievement
bar and a pop-up window providing feedback. Figure 3 shows the pop-up window
with the achievement bar and our character reaction at the bottom. If we were
not able to complete the step with the minimum lines of code, the software will
let us know with a challenging part, but it does not help us to complete the
step with the minimum lines of code (see Figure 4). But if it was really going to
encourage exploration, it should allow the user to see all of the options he/she
could select and do, but it does not.

For every task, the software only provides us with the number of blocks we
need. Therefore, they are not encouraging exploration all that much. They are
not providing us with other alternatives. That is a bit of a criticism if we are
encouraging people to explore. If we want to encourage exploration, we do not
constrain people. We give them a bunch of different things, so that they explore
to see what happens. We are surprised they did not give all the blocks that are
relevant to let us explore a bit (e.g. shear sheep and cut down tree). We were a
bit confused that we did not know all the possible things or at least some small
subset of the possible things.

In the second part of the first task, the software took awaycut down, and
added shear.

It provides the user with more information about the reason of doing the task,
e.g.“wood is a very important resource. Many things are made from it.” The third
part of the first task uses “shear” command instead of “destroy block”.



6 Affective Walkthroughs and Heuristics

Walkthrough— First task: Command Sequences
1 What is the learning goal of this task?
About learning programming and being engaged. In this task we used com-
mands and add them in the work space to help the character move around
the screen. we were able to see the code that we created with using blocks. It
can be done, but there were no motivation to it, and considering the role of
narrative, which could be better.
Summary: The learning goal of this task was understood to learn how to add
new commands in the program, but no motivation.

2 Where in the affective cycle of learning is this task? (i.e. exploring, challenging,
overcoming, and affirmation)
It cover exploring and gives feedback through sound and text if I did wrong
and otherwise an affirmation sound with jumping character and the character
being happy.
Summary: The affective cycle of learning was exploring and affirmation.

3 Is the appropriate affective support provided?
Yes, by adding blocks from toolbox in the work space, we can see how our char-
acter moves in the play space, and receiving positive feedback or negative that
is still encouraging by providing how to try again with character’s emotional
reaction.
Summary: appropriate affective support is provided with different multimodal
support.

4 Does the affective support work as intended?
No, affective support did not work as intended. The emotional support was
well provided, but the task did not provide reasons of using the commands.
Summary: even with the affective support provided, the purpose of the task was
not clear.

Table 3: First Task Walkthrough Results: walk around.



Affective Walkthroughs and Heuristics 7

Fig. 3: Task 1 - Step one.

Second Task: Repeat Loop and Commands — Simple Task
1 What is the learning goal of this task?
The learning goal of this task was to help you learning about repeat loops and
commands in programming.
Summary: learning about repeat loops and commands.

2 Where in the affective cycle of learning is this task? (i.e. exploring, challenging,
overcoming, and affirmation)
The affective cycle of learning in this task covers all the four cycles. The
Minecraft let us explore, and provide us with three different easy to medium,
and hard questions covering the challenging cycle. Then it helps us to overcome
with popup windows. And at the end it gives us affirmation.
Summary: it has exploring, challenging, overcoming, and affirmation.

3 Is the appropriate affective support provided?
Yes, it starts with a question and a hint, i.e. “We need to build a house before
the sun goes down. House requires a lot of wood. Cut down all the 3 trees.”
Summary: affective support was provided

4 Does the affective support work as intended?
No, it does not work as intended. It really does not help us to build a house,
just create some walls. Other issue with the software it tells us the task should
be done before the sun goes down, but it does not work as intended, and we
do not have a time limit or a change in the background.
Summary: the purpose of this task is to build a house, which it did not help us
to do so.

Table 4: Second task walkthrough results: build a house.



8 Affective Walkthroughs and Heuristics

Fig. 4: Task completion but not with minimum lines of code.

As we are not using repeat loops in this task, the last part of task one
needed lots of “moveForward()” blocks. It would be easier if we could just tell
the computer to perform the move forward command the number of times we
needed. It would be much easier to transition to repeat loops, if we had told the
computer to “move forward” a specific number of times. We will need thousands
and thousands of blocks to create a new world in Minecraft.

Second Task The second task is about building the rest of a house from the
material available. The “repeat” command will come in handy. For the last part
of the task we can select “Easy”, “Medium” or “Hard”. The steps are shown in
Table 5 and the results of the walkthrough are shown is Table 4.

Second Task: Repeat Loop and Commands — Simple Task
1 Build the first part of your house by putting the “place” and “move forward”
commands inside the repeat loop.

2 Let’s build a house. Choose the floor plan (easy, medium or hard) for your
house.

Table 5: Second task: build a house.

The second and third tasks are about how to come up with algorithms,
giving a problem and solve it using repeat loops. For the first part of task two,
the software provides the reason and time to complete this part by saying: “We
need to build a house before the sun goes down. Houses require a lot of wood.”
For the second part of this task it suggests: “Every house starts with a wall.”

This part of the software is not telling the user how much wood he/she gets,
and why we need to chop down all the trees. We do not have variables. We do



Affective Walkthroughs and Heuristics 9

not have any idea how much wood we have. Also we can not really build a house;
we can just build some walls, so the story is not correct.

Third Task This task is again about using “Repeat loops” and “commands”, but
in a more challenging way using some creativity and freedom. It has four steps
and each step takes you to different interactive spaces including: 1. Plant crops
on both sides of water, 2. Move past the Creepers and reach safety at home, 3.
Move underground placing torches and mine coal, 4. Avoid walking into molten
and place cobblestone to create a bridge, and mine iron blocks. The steps are
shown in Table 6 and the results of the walkthrough are shown is Table 7. This
task has gamification steps to bring more engagement to the user.

Third Task: Repeat Loop and Commands — Challenging Task Com-
mands
1 Plant crops on both sides of the water so you don’t get hungry later on. (It’s
good to plan ahead.)

2 Running into a Creeper is a bad idea. Carefully move past the Creepers and
reach the safety of your home.

3 You’ll find the most valuable resources underground, but it can get dark. Place
at least 2 torches and mine at least 2 coal.

4 Walking into molten lava is a bad idea. Place cobblestone to create a bridge,
then mine at least two of the iron blocks.

Table 6: Third task: plan some crops.

Forth Task Finally, the last task is about “commands”, “repeat loops”, and
learning about “if” statements; a fundamental part of learning to program. It
introduces us to a concept, which requires more problem solving. “if” statements
help all computers make decisions. We are able to use “if” statement in the code
to make our character react to what they see in the world, e.g. if there is rock
in front of her, she can turn left or right and watch her steps. It has two steps;
first step is simple and second step is more challenging, which are including:
1. Lava is hiding beneath some of these blocks, which you’ll need to cover up
before moving forward, 2. Mine redstone but don’t fall in the lava by placing
cobblestone over any lava you uncover. The steps are shown in Table 8 and the
results of the walkthrough are shown is Table 9. This task has gamification steps
to bring more engagement to the user.

3.3 Discussion

Reviewing the results of our walkthroughs, we are able to make several general
observations. Most simply, we were pleased with several strengths: good visual
effects and artwork, and sensible audio. Beyond those, however, we found more
insight, described in sections below.



10 Affective Walkthroughs and Heuristics

Third Task: Repeat Loop and Commands — Challenging Task Com-
mands
1 What is the learning goal of this task?
The learning goal of this task was to practice using different commands with
repeat loops bringing challenging steps.
Summary: providing challenging steps.

2 Where in the affective cycle of learning is this task? (i.e. exploring, challenging,
overcoming, and affirmation)
This task only covers affirmation and somehow challenging cycles, the steps are
not encouraging enough and there is no clear help to overcome the challenges.
Summary: it covers challenging and affirmation cycles.

3 Is the appropriate affective support provided?
Yes, there are similar affecitve support provided that are: giving a short story
about the task and then emotionally trying to engage us in the space
Summary: it was provided.

4 Does the affective support work as intended?
There was a story at the beginning of each step, but narrative is not considered
well to make it an exciting experience.
Summary: even with bringing challenge in this task it was not motivating and
good story is missing.

Table 7: Third Task Walkthrough Results: Plan some crops.

Fourth Task: “if” statement
1 Lava is hiding beneath some of these blocks, which you’ll need to cover up
before moving forward. An “if” command will come in handy here. Add a
“move forward” command in the correct place to mine these blocks.

2 Now things are getting tricky. Mine 3 redstone, but don’t fall in the lava. Use
an “If” command to place cobblestone over any lava you uncover.

Table 8: Fourth Task: “if” statement.



Affective Walkthroughs and Heuristics 11

Walkthrough— Fourth task: “if” statement
1 What is the learning goal of this task?
The learning goal of this task was to use command, repeat loop, and “if”
statement.
Summary: learning about “if” statement.

2 Where in the affective cycle of learning is this task? (i.e. exploring, challenging,
overcoming, and affirmation)
This task covers the challenging (providing two steps: simple and challenging)
and affirmation, but does not encourage in exploration or help to overcome.
Summary: covers challenging and affirmation, but exploring and overcoming is
not very well done.

3 Is the appropriate affective support provided?
Yes, we saw different affective support during the task.
Summary: there is appropriate affective support provided.

4 Does the affective support work as intended?
no, the affective support did not provide a clear narrative to engage us in doing
this task.
Summary: no, the affective support did not provide a clear narrative

Table 9: Fourth Task Walkthrough Results: “if” statement.

World and Story Perhaps our main positive finding was the interplay between
the model world of the “playspace” and the narrative aspects of the programming
tasks given in the instructions. We felt it was clear and motivating when the learn
was asked to create programs to move the avatar, chop down the tree, build a
wall, and so on. The world and the story seemed to go together well, almost the
way that narratives often work in computer games. This worked very well here,
and showed some limitations in tutorials in Scratch, for example, which typically
start with a blank canvas, rather than a world ready for a story.

While acclaiming this aspect, we found two weakness. One is that there was
often little motivation for the actions requested in the instructions. The learner is
asked to chop down trees, for example, before any mention of building walls for a
house. Second is that there was no overall story, no eventual goal to accomplish,
despite this being so common in computer games. Even in Mario, the player
knows they are not done until the princess is saved.

Challenge but not Overcome We very much appreciate the way in which the
tutorials helped the learner get started, offering a clear narrative goal, exactly
the right tools to accomplish it, and providing affirming feedback when done.
In several places, however, it seemed that this limited exploration: it encour-
aged simple constrained programming, but did not add the context of a large
number of possibilities in the “toolbox”. Learning to choose a strategy in the
presence of many possibilities, with different strengths, is essential to learning
about problem-solving.



12 Affective Walkthroughs and Heuristics

We also liked the ideas of greater challenge by suggesting it might be done
with fewer steps: we felt it really would make the learner try to do better.
But whereas a real teacher might monitor and provide hints when the learner
gets frustrated, the tutorial offered nothing equivalent. Considering Kort’s cycle,
there was support to challenge, but not to overcome. As we show in Figure 5,
we see the support for the cycle strong in some places (Challenge, Affirm) but
weak in others (Explore, Overcome).

Fig. 5: Minecraft and Kort et al. [7] steps.

Simple Programming As the name “Hour of Code” suggests, the tutorial only
addresses the simple beginnings of programming — “First Hour of Code” might
be more appropriate. We noticed no real introduction to variables, for example,
despite the potential of having them associated with objects in the model world.
There was also no lead-in to object orientation, the most common practical
paradigm for programming, again despite the potential of objects in a model
world — this is exploited well in Alice, for example. In reviewing comments on
official videos about the Hour of Code tutorial, this was a common criticism,
that it wasn’t introducing “real” programming:

I’m not convinced that this kind of a tutorial could help anybody in un-
derstanding of programming paradigms. Modern programming is mostly
object-oriented, and this film could at most give a little of vision, how
sequential programming should look alike. IMO it’s not proper to teach
only sequential programming, without any code and without even telling,
that another styles of programming exists. Moreover, I think that be-
ginning learning of programming with sequential programming instead
of object-oriented programming could make OOP harder to understand
Youtube Comment

However it is still an open question as to whether OOP or sequential program-
ming is best for absolute beginners. Similarly, other programming paradigms are
also not addressed. These issues are beyond our limited scope in this study.



Affective Walkthroughs and Heuristics 13

One last point is perhaps more relevant. By basing the tutorial on Minecraft,
many beginners might hope to get started with actually programming in Minecraft,
which is done in JavaScript. The tutorials do show pop-up windows showing
JavaScript code equivalent to the jigsaw blocks, but go no further. We under-
stand that the complexities and dependences in real JavaScript would present
great difficulties to address within the Hour of Code framework, but we also
anticipate that some beginners might find this disappointing.

Affective Heuristics (Version 3)
H1: Design elements and modalities should support the affective learning strat-
egy
H2: Ensure help and documentation is provided where needed but does not
distract from affective learning strategy
H3: Maintain visibility of progress, affirming challenges already overcome, and
those remaining
H4: Allow the user freedom to explore but also to return to the previous step
H5: Avoid or prevent actions with neither feedback to help overcome, nor affir-
mation when success
H6: Visualize options clearly to encourage exploration
H7: Tailor actions to be encouraging at first and efficient later, while learners
are attempting to overcome challenges
H8: Challenge learners and provide constructive feedback if they fail, and af-
firming success when they succeed
H9: Match the learners world view in affective strategy and multimodal support
H10: Maintain interface cohesion to support affective strategy

Table 10: The Affective Heuristics (Version 3).

4 Minecraft Hour of Code and Affective Heuristic
Evaluation

This section addresses the use of the affective heuristic evaluation [5] to evaluate
affect in the user interface, educational design, and content of Minecraft Hour
of Code to see if the software supports the educational objectives, narrative and
persuasion to make the learners more engaged in learning programming. The
affective heuristic evaluation is based on Nielsen and Molich [9], and adapted
with affect supported by Norman [10] and Kort et al.’s emotional cycle of learning
model [7] as well as multimodal design based on Sankey [12]. We have explained
the full rational in more detail earlier [4].



14 Affective Walkthroughs and Heuristics

4.1 Method

The study was performed in the same laboratory as earlier. In this study, we
applied the evaluation method as discussed earlier. We reviewed the heuristics,
explored, and then reflected on the software. We then wrote comments about
the environment filling in a table with respect to the different heuristics. For
heuristic severity we adapted Nielsen’s severity ratings for usability problems [8],
changing their emphasis to reflect emotional educational impact. We explicitly
emphasized on the learning objective and the modality that was employed.

For the learning objective we considered the following. This system was de-
signed to be fun for a student working alone or in a classroom where the instruc-
tor has minimal preparation or computer science background. It has fourteen
tutorials to learn the basics of JavaScript programming concepts that are: use of
commands, repeat loops and if statements. It aims to create a quick and enjoy-
able experience for students and instructors who are new to computer science.

The modality involved a 2D block world with programming using jigsaw
pieces. There is also an avatar to represent the user, animation of the block
world, and engaging audio samples. Moreover, it used a narrative and persuasion
quasi-modalities.

We went through the interface systematically. For example we added blocks
to the workspace, trying to think of the intended user. We checked in each step if
the system state to consider the learning objective and the modality employed.
At the end of the suggested tasks, we filled in a table with issues based on the
ten heuristics. Table 10 shows the affective heuristic evaluation. This is the set
of heuristics following revisions discussed in [5].

4.2 Findings

In this study, the evaluators read the heuristics, explored, and then reflected on
the environment. They then wrote comments including the interface element that
was violated, problems that illustrated poor considering of affect and modality,
suggestions and recommendations for solutions, and the severity based on Jakob
Nielsen’s five-step rating scale [8]. Tables 11 and 12 show the affective heuristic
evaluation results. Each of the ten heuristics led to a useful comment at least
once.

4.3 Discussion

The heuristics invited reflection on modality as well as affect. Our findings show
that the affective heuristic evaluation led to identification of many problems and
potential solutions as shown in the tables. By reviewing these results, we can
make some general observations.

Narrative and continuity There was no clear continuity between the steps.
One of the tutorial steps was to chop down trees (Figure 6 top left), and the



Affective Walkthroughs and Heuristics 15

next one was to shear sheep (Figure 6 top right). The wool that resulted from
shearing was never used or mentioned again. It did say that wood was useful for
building and later steps did build walls for a house, but there was no indication
of the wood came from chopping down the trees. It could have been made more
continuous making it clear that the trees were used to build the house and
also by using the wool to make carpets etc. They are building a house without
using the wood or the wool, and therefore, there is no strong continuity and
storytelling between the steps (Figure 6 bottom). This might also have been a
useful opportunity to introduce quantities of wood or wool as variables.

Fig. 6: Narrative and continuity.

Encouraging Exploration There was not enough encouraging to explore at
each step, and no clear story for exploration. The commands provided were
specific to each step, meaning there were not all commands provided in each
tutorial e.g. shear was provided in the sheep-shearing task but not in other
tasks. The commands were changed for every tutorial, which is a real limit to
learning as it restricts exploration, and people would expect specific commands
for each programming situation. Figure 7 shows the command blocks for tutorials
two and three. They can use “destroy block” in the second tutorial step but it
is not seen in the third tutorial step where they have to use “shear” instead.

JavaScript Code As we mentioned, the real Minecraft software is programmed
using JavaScript. Minecraft Hour of Code uses the jigsaw command blocks. But
when the task is complete, is shows the real JavaScript code. But a learner would
not know what they have to do with this code; there is a poor connection between



16 Affective Walkthroughs and Heuristics

Fig. 7: Encouraging Exploration.

the JavaScript code and the block commands that represents that code, and
there is no affective feedback provided to the learners. Therefore, the connection
between them is not made; we can not edit or change the JavaScript code. They
are not really learning the JavaScript language. The JavaScript code is not even
nicely formatted, and there is no interaction with the learners, which can lead
to disappointment for them (see Figure 8).

Fig. 8: Blocks with the generated code.



Affective Walkthroughs and Heuristics 17

5 Conclusions

In this paper we presented our evaluation of the multimodal affective learning
support in Code.org’s Hour of Code tutorial set based on the popular game
Minecraft. We applied our two proposed evaluation methods called the affective
walkthrough and the affective heuristic evaluation, modeled on the widely used
cognitive walkthrough and heuristic evaluation. The new methods keep the pro-
cedural framework of the cognitive walkthrough and heuristic evaluation, but as
the evaluator steps through, the questions and heuristics are about emotional
support in education.

The Hour of Code Minecraft software applies various modalities to support
learning, talking a visual approach with a engaging game-like graphics, a model
world, and a programming language using jigsaw-like pieces (as do Scratch and
Alice). The tutorial instructions add a narrative aspect, whereby the program-
ming tasks involve acting out a story in the model world.

Our experience in conducting the evaluation was positive and enlightening.
We recognized elements in the Hour of Code design that we would not otherwise
have noticed, and also identified ways in which the design might be improved. We
see as especially valuable the interplay between the spatial model world, and the
narrative stemming from the instructions. On the other hand, we felt that some
extra freedom in command choice might in several places be helpful. Also, where
challenges were provided by suggesting shorter solutions were possible, it would
be helpful to add a capability for the learner get hints so they can overcome the
challenges if they are stuck. We also recognized the limits of the tutorials, which
really only learners with the very early steps in learning to program.

We appreciated the focus of the affective walkthrough and affective heuristic
evaluation focus on modality benefits and teaching goals, and most importantly
its use of Kort’s model of the affective cycle in learning. We feel they offer a
helpful and systematic approach to evaluating affective learning in multimodal
software.

References

1. Chao, P.Y.: Exploring students’ computational practice, design and performance
of problem-solving through a visual programming environment. Computers & Ed-
ucation 95, 202–215 (2016)

2. Dann, W.P., Cooper, S., Pausch, R.: Learning to Program with Alice (w/CD
ROM). Prentice Hall Press (2011)

3. Dormann, C., Biddle, R.: Understanding game design for affective learning. In:
Proceedings of the 2008 Conference on Future Play: Research, Play, Share. pp.
41–48. ACM (2008)

4. GhasemAghaei, R., Arya, A., Biddle, R.: Multimodal software for affective edu-
cation: Ui evaluation. In: EdMedia: World Conference on Educational Media and
Technology. vol. 2015, pp. 1851–1860 (2015)

5. GhasemAghaei, R., Arya, A., Biddle, R.: Evaluating software for affective edu-
cation: A case study of affective heuristics. In: EdMedia: World Conference on
Educational Media and Technology. vol. 2016, pp. 573–580 (2016)



18 Affective Walkthroughs and Heuristics

6. GhasemAghaei, R., Arya, A., Biddle, R.: Evaluating software for affective educa-
tion: A case study of the affective walkthrough. In: International Conference on
Human-Computer Interaction. pp. 226–231. Springer (2016)

7. Kort, B., Reilly, R., Picard, R.W.: An affective model of interplay between emotions
and learning: Reengineering educational pedagogy-building a learning companion.
In: icalt. p. 0043. IEEE (2001)

8. Nielsen, J.: Severity ratings for usability problems. Papers and Essays 54, 1–2
(1995)

9. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of
the SIGCHI conference on Human factors in computing systems. pp. 249–256.
ACM (1990)

10. Norman, D.A.: Emotion design: Why we love (or hate) everyday things (2004)
11. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-

nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Communications of the ACM 52(11), 60–67 (2009)

12. Sankey, M.D.: How to develop 15 multimodal design heuristics in 3 easy (not)
lessons. International journal of Pedagogies and Learning 3(2), 60–73 (2007)

13. Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method:
A practitioner’s guide. In: Usability inspection methods. pp. 105–140. John Wiley
& Sons, Inc. (1994)

14. Wilson, C.: Hour of code—a record year for computer science. ACM Inroads 6(1),
22–22 (2015)

15. Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., Picard, R.: Affect-
aware tutors: recognising and responding to student affect. International Journal
of Learning Technology 4(3-4), 129–164 (2009)



Affective Walkthroughs and Heuristics 19

Affective Heuristic
Evaluation Involved

Interface El-
ement

Problems not con-
sidering affect and
modality

Suggestions for So-
lution/ Comments/
Recommendations

Sev
(0
to
4)

H1: Design elements
and modalities should
support the affective
learning strategy

Show code The JavaScript
code is provided
but without affec-
tive support

Have it be more
interactive Some
kind of interaction
to get them more
engaged Use more
physical/material
design elements

4

H2: Ensure help and
documentation is
provided where
needed but does not
distract from affective
learning strategy

Affirmation
pop-up
window

It does not pro-
vide all the possible
things or at least
some small subset
of possible things

Give hints and use
affective persuasion

3

Tasks,
command
sequences

Reasons of using
commands not pro-
vided

There can be a mul-
timedia content e.g.
video and provid-
ing the purpose and
goals of using com-
mands

3

H3: Maintain visibil-
ity of progress, affirm-
ing challenges already
overcome, and those
remaining

Entire envi-
ronment

Pretty good job for
this part

Progress timeline
can also show the
steps

0

H4: Allow the user
freedom to explore but
also to return to the
previous step

Tool Box Software only pro-
vides us with num-
ber of blocks we
need, and it is not
encouraging explo-
ration all that much

It should provide us
with other alterna-
tives

3

Minecraft
Hour of
Code tutori-
als list

No label next to
each task in the
timeline

Better to have label 4

H5: Avoid or prevent
actions with neither
feedback to help over-
come, nor affirmation
when success

Affirmation
pop-up
window

To overcome the
challenge with min-
imum lines of code
there is no feedback
to help overcome

Provide some feed-
back to how to be
able to get to mini-
mum lines of code

3

Table 11: The Affective Heuristic Evaluation H1 to H5.



20 Affective Walkthroughs and Heuristics

Affective Heuristic
Evaluation Involved

Interface El-
ement

Problems not con-
sidering affect and
modality

Suggestions for So-
lution/ Comments/
Recommendations

Sev
(0
to
4)

H6: Visualize
options clearly to
encourage
exploration

Tasks,
command
sequences

No motivation and
role of narrative
could be better

Provide a good
narrative about
using command
sequences in this
task

2

Tasks, re-
peat loops

Narrative is not
considered well to
make it an exciting
experience

Provide a good nar-
rative about using
repeat loops in this
task

2

Tasks, “if”
statement

No clear narrative. Provide a good nar-
rative about using
"if" statement in
this task

2

H7: Tailor actions to
be encouraging at first
and efficient later,
while learners are at-
tempting to overcome
challenges

All tasks No clear narrative
and connection be-
tween the steps

Easier tasks are
earlier but there is
no clear connection
between the steps

2

H8: Challenge learners
and provide construc-
tive feedback if they
fail, and affirming suc-
cess when they succeed

Puzzle 2 to 3 No challenge add some challenge
to puzzle 3

0

H9: Match the learn-
ers world view in affec-
tive strategy and mul-
timodal support

Puzzle 4 Starts well, but
then give examples,
and then does
not continue well,
e.g. not building
a house. Sun does
not go down. Story
is not correct

It is not complete
but it is pretty good
at creating a child
world.

1

H10: Maintain
interface cohesion
to support affective
strategy

Tool box No learning to
choose a strategy
in presence of many
possibilities with
different strengths

Add more affective
strategies

3

Show Code Also JavaScript
not bringing en-
gagement and
motivation

Using affective
strategies to have
interaction with
users

4

All steps Narrative is not
well done

Have a better story-
telling and continu-
ity

2

Table 12: The Affective Heuristic Evaluation H6 to H10.


