
56 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 59 /19©2019 I E E E

FEATURE: PROCESS IMPROVEMENT

OVER THE LAST decade, new soft-
ware processes have appeared that
emphasize collaboration among peo-
ple involved in creating successful
software. For example, agile meth-
ods stress collaboration between
development teams and business cli-
ents,1 and DevOps emphasizes better
collaboration between development
teams and deployment teams.2,3

In our recent work, we have been
studying operations centers, with a
focus on incident response (IR). We
were interested in how IR works in
practice and how it might be bet-
ter supported. We studied seven op-
erations centers and reported our
findings in detail elsewhere.4 Our
primary finding was that, above
the initial help-desk level, IR is be-
ing done with dynamic tailor-made
teams, as opposed to fixed teams.
These teams involve people with

various levels of seniority and ex-
pertise, brought together virtually to
best address an issue. Their experi-
ence has great potential value.

Incident management has some
clear terms. In 2000, the Information
Technology Infrastructure Library
(ITIL) in the United Kingdom defined
an incident as “an unplanned interrup-
tion to an IT [information technology]
service or reduction in the quality of an
IT service.”5 The ITIL documents led
to the International Organization for
Standardization (ISO) standards on IT
service management (ISO 20000). In
both the ITIL and ISO documentation,
the goal is clear: Incidents need to be
resolved and then closed. Service con-
tinuity is the priority. Of course, the
ITIL and ISO processes also include
reporting and, where necessary, root-
cause analysis. However, the focus is
always on technical faults and their
resolution, and there is little or no con-
sideration of innovation in products,
services, or processes.

In our study of IR teams, we were
impressed by the tailor-made teams.4
We especially admired the knowledge
that frequent members of the teams
built up over time about the experi-
ence of users and customers. In the
context of IR, they learned about cus-
tomer workflows, their motivations,
and their priorities. All this informa-
tion helped resolve the incidents and
might even help avoid such incidents
in the future. We developed a view
that there was an even more valu-
able opportunity. While agile meth-
ods bring the client and developer
together, and DevOps extends the
collaboration to deployment, we feel
that a new collaborative relationship
might involve incident responders.
The unique and valuable knowledge
from incident responders should be
used to support the design and de-
velopment of new releases and new

From Incident
to Insight
Incident Responders
and Software Innovation

Robert Biddle and Judith M. Brown, Carleton University

Steven Greenspan, CA Technologies

// Incident response teams often gain deep

knowledge about the experience of using

products and services. If this knowledge

was made available to designers, significant

opportunities for innovation would emerge. //

Digital Object Identifier 10.1109/MS.2017.442103917
Date of publication: 8 January 2019

IM
A

G
E

 L
IC

E
N

S
E

D
 B

Y
 IN

G
R

A
M

 P
U

B
LI

S
H

IN
G

 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE 57

software products. Incidents need not
only indicate trouble; they might also
lead to insight.

Collaboration and
System Development
Collaboration among different groups
in software development is not a new
idea. Even in early processes, for ex-
ample, there was acknowledgment
that collaboration between clients and
developers was an important idea. As
long ago as the 1960s and 1970s, par-
ticipatory design (also known by sev-
eral other names) emphasized the role
that users might play in the design pro-
cess.6 The misinterpretation of Win-
ston Royce’s waterfall description7 is
probably a low point, as it suggested
to many people that the parts of the
process could be executed in strict se-
quence, with artifacts passed “over the
wall.” However, Craig Larman and
Victor Basili documented that, even in
the early history of software develop-
ment, iterative and incremental pro-
cesses involved customer feedback.8

As computer usage increased, the
role of users became more widely ac-
knowledged, leading to the field now
known as human–computer interac-
tion. One of the key early books, User
Centered System Design, emphasized
that software development needs an
interdisciplinary collaborative team.9
This led to the practices now com-
mon in user experience (UX) work.

Collaboration has always been
vigorously emphasized in agile soft-
ware development. The Agile Mani-
festo, for example, says the signatories
value “Customer collaboration over
contract negotiation.”10 One of the
12 principles is “Business people and
developers must work together daily
throughout the project.” Another is
“The best architectures, require-
ments, and designs emerge from self-
organizing teams.” Alistair Cockburn

suggested software development
should be a cooperative game:

The team, which consists of the
sponsor, the manager, usage
specialists, domain specialists,
designers, testers, and writers,
works together with the goal of
producing a working and use-
ful system. In most cases, team
members aim to produce the
system as quickly as possible, but
they may prefer to focus on ease
of use, cost, defect freedom, or
liability protection. …The game
is cooperative because the people
on the team help each other to
reach the goal. The measure of
their quality as a team is how well
they cooperate and communicate
during the game. This measure is
used because it affects how well
they reach the goal.1

In addit ion to stressing team
self-management and collaboration
between business interests and de-
velopers, agile processes emphasize
rapid and frequent iteration. Other
principles underpinning the mani-
festo are “early and continuous de-
livery of valuable software” and the
need to deliver working software fre-
quently. These are also some of the
motivations for DevOps:2,3 If we are
going to frequently transition soft-
ware from development to produc-
tion, the transition process needs to
be smooth. In particular, develop-
ment teams and operations teams
need to work effectively together and
be supported by appropriate tools.

One reason quickly becomes clear:
when systems evolve rapidly, incident
responders need to be kept informed
about new features to make sense
of problems that arise. However,
while IR is often included as part
of “operations,” there is very little

consideration of how it might play a
collaborative role in innovation. For
example , in the 2011 DevOps pa-
pers that Patrick Debois introduced,
IR is barely mentioned and does not
participate fully, if at all.2 Greater
involvement of incident responders,
therefore, will make deployment of
increments and changes smoother,
steadier, and faster. Another ben-
efit is less immediate but represents
a significant opportunity because IR
can provide key information to
guide system design. Statements about
 DevOps can be clear about the need
for a continuous cyclic approach, but
there is little consideration of IR.

Figure 1 illustrates collaboration
across activities in system-develop-
ment processes. The rows show the
roles according to the timing of their
main emphasis, from earlier (top) to
later (bottom). The columns display
collaborative processes in a simi-
lar way, with UX earlier (left) and
incident response later (right). Col-
laboration is emphasized between
temporally adjacent roles.

In an iterative approach, how-
ever, the later roles should also col-
laborate with the earlier roles. For
example, UX processes emphasize
learning from users to inform design.
So, while UX design comes early and
designers study users and work prac-
tices before beginning design, they
also study users of the system later to
inform design of a later release.

Our proposal is that a better
process would also involve learning
from incident responders, connect-
ing incident to insight: I2I. We do not
suggest it can be a complete substitute
for learning from real users. However,
it has added value because incident
responders are part of the operations
team. They have insights into the lives
of many users having difficulties and
into the root causes of and solutions

58 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PROCESS IMPROVEMENT

to the problems and requests. More-
over, because they are part of the op-
erations team and are often in the
same organization, working with
them would be easier and more con-
tinuous. This new connection would
augment existing processes and need
not replace or change them.

The IR Experience
In our study of IR in operations
centers, we employed rigorous eth-
nographic and qualitative-analysis
methods. We conducted extensive
observations, interviewed 38 people
in depth, and shadowed 139 people
for several hours. We studied seven
operations centers covering a range
of sizes (from three people to more
than 100). Each center was part of
a different organization, and the
organizations provided services in
different domains (finance, health,
education, military, and security).
We also met with managers and ex-
ecutives responsible for the opera-
tions centers. As we conducted the

study, we gained a good understand-
ing of the processes involved, how
they compared with standards, and
how they might be better supported.

All this is documented in our paper
“Incident Response Teams in IT Op-
erations Centers: The T-TOCs Model
of Team Functionality.”4 We docu-
mented how current incident manage-
ment practices use dynamic ad hoc
IR teams—that is, tailor-made to the
circumstances. The response process
may be highly structured and under
tight time constraints. However, over
time, these professionals construct a
detailed mental model of when and
how users experience the product or
service when things go wrong.

As our study progressed, we also
developed an understanding of the
people involved, their knowledge,
and their reflections on their work.
There was considerable diversity. We
talked to young people relatively new
to work, having come from training
in the last year or two, older people
who had spent their entire career at

one organization, and others who
had moved from another organiza-
tion specifically because their ex-
pertise in some special context was
wanted for IR.

Another aspect of the diversity was
that, above the tier-one or help-desk
level, many people involved in IR did
not have that as their sole or even pri-
mary role. For example, where an in-
cident concerned a specific software
system, it was common to directly in-
volve developers who created or main-
tained that software. Where hardware
or networking elements were involved
in the incident, it was common to get
experts on those aspects, sometimes
from other organizations, such as
hardware vendors or infrastructure
providers. When the business cus-
tomer involved was known to be criti-
cally important, it was common to
directly involve higher-level manag-
ers or sales representatives. All these
people and those from other special-
ties served directly on the tailor-made
teams we observed.

Finally, we observed that some in-
cident responders were regularly on
teams and experienced the incidents
from beginning to end, while oth-
ers were there on an occasional and
as-needed basis. Those who were
regularly on IR teams served as the
coordinator of the team, the tech-
nical liaison with the customer, the
technical expert capable of resolving
the issue at hand, or in some other
role. These and others, such as oper-
ational managers, developed a broad
perspective on incidents.

We observed these teams and
watched incidents unfold, typically
using conference calls, dedicated
multiperson chat windows, and a va-
riety of one-on-one communication.
We also were able to discuss the situ-
ation with team members, sometimes
while they waited for information

UX Agile DevOps Incident
Resolution

I2I:
Incident
to Insight

Product
Owner

Business
Analyst

UX Designer

Developer

Deployer

Incident
Responder

User

FIGURE 1. Collaboration in system-development processes. The rows show various

roles; the columns show particular processes, indicating the roles that collaborate.

Stars indicate primary roles; bullet points indicate secondary roles. The straight double-

headed arrows indicate ongoing collaboration; the curved single-headed arrows indicate

learning to inform later design. The column on the right illustrates the authors’ proposal.

 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE 59

and at other times after the incident
was resolved. What we appreciated
more and more as our studies pro-
gressed was the breadth and depth of
understanding these people had for
their customers and users.

It seems obvious: When your role
is to help people with problems, espe-
cially complex problems, you learn a
lot. First there is the problem itself,
which typically requires some work-
place and workflow context to even
describe. Then there is the priority
(how important this is), what the
time frame is, why, what the conse-
quences of failure are, and for whom.

This all forms a rich picture. It
often goes beyond workplace func-
tionality and efficiency: It can be
personal, emotional, and even heart-
breaking. Business success and failure
can be at stake, as can personal ca-
reers. Some incidents can take hours
or even days to resolve, and people
get to know each other with small de-
tails that illuminate lives on the other
end of the phone line and the other
side of the country or the world. With
long-term business relationships, in-
cident responders and customers be-
gin to recognize names, people, their
context, and their history. Moreover,
they become familiar with long-term
patterns, when the system load is typ-
ically heavy or light, the performance
characteristics that are manifested,
and which times are critical for a cus-
tomer’s business.

All this has great potential to in-
form system refinement and redesign.
Depending on the nature of what is
learned, a broad range of system is-
sues may be affected. For example, the
knowledge might inform user-inter-
action design. Even improving docu-
mentation or context-sensitive help
might significantly improve UX. The
knowledge might also inform the busi-
ness model of the system because that

model can create the foundation for
problematic behavior. For example, us-
ers may overuse parts of a system that
do not incur costs and thus fail to use
more appropriate but costlier mecha-
nisms. Furthermore, the knowledge
may affect architecture or even hard-
ware, when unforeseen issues indirectly
lead to incidents. Incident responders
may learn about such patterns, which
might otherwise go undetected.

We observed one example involv-
ing IR in a system for a health-care
organization. The actual incident
involved authentication, and the res-
olution was straightforward: a pass-
word reset. This might be seen as a
request, rather than an incident, but
the issues arising are similar, as they
both can represent significant learn-
ing opportunities.

The context was rich, because in
health care, as in banking, authentica-
tion is important to not only protect
access to services and resources but
to also record who took what actions,
thus providing an audit trail. In health
care, however, the imperative for care
can be seen as especially important,
and workers may sidestep authentica-
tion or use a colleague’s credentials to
immediately proceed with their work.
Password reset requests, despite seem-
ing of low importance, can be fre-
quent and may involve several kinds
of stress for the user: lives, as well
as regulatory compliance, may be at
stake. To their credit, the incident re-
sponders we studied detected this pat-
tern and formed a team involving the
responders and managers to explore
what was happening in more detail by
inspecting incident logs.

While we did not see how this is-
sue was resolved, the conflict involved
in health-care authentication has been
well documented elsewhere.11 It also
seems possible that developing an un-
derstanding of the problem might

lead designers to suggest solutions.
For example, health-care authentica-
tion should be so fast and easy that
the conflict seldom arises. Examples
might include usable biometrics or
authentication tokens. Where conflict
still arises, perhaps in emergencies,
there might be remedial actions avail-
able to investigate and approve the ac-
tions taken retroactively. In this way,
while password reset might seem like
a simple resolution, the potential in-
sight might lead to better design with a
much greater impact for both hospital
workers and information integrity.

Another example from the same
site stems from an interview with
one responder who reflected on a
pattern spanning many incidents.
These concerned users, patients, and
interactions with insurance provid-
ers. The responder suggested that
these issues could be either simpli-
fied or eliminated if the users them-
selves were able to enter the system
and access some information online
through the already-existing portal.
This would ease the evident frustra-
tion that users felt when having to
request help for things they might be
able to do themselves. It would also
save time for the responders. An-
other idea from the same responder
was that the resolution of user prob-
lems might be much easier with some
simple screen-sharing capability.

These examples highlight two
important points. One is that some
knowledge stems not from a single
incident but from many. This sug-
gests that simple recording of data
from incidents may not be sufficient,
as detecting patterns involves expe-
rience over time. The other point is
that, although the responder’s sug-
gestions seem valuable, we must be
cautious, as other factors might be in-
volved. For example, there might be
health-care, legal, or business reasons

60 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PROCESS IMPROVEMENT

for keeping responders in the loop.
Accordingly, the ideas from the re-
sponder would need careful consider-
ation by design or business analysts.
In this context, we should not expect
responders themselves to design solu-
tions. Rather, their major value is to
help identify problems and patterns.

Making the Connection
So if IR can inform design, how
might the connection be made? On
the basis of our time spent studying
IR teams, we can identify several
possible approaches.

IR Management
One potential approach might be for
IR management to take responsibility.
In our study, it was common for inci-
dents to be logged and for descriptive
reports to be written upon closure.
Reports were later reviewed and ana-
lyzed by managers to appraise perfor-
mance and assist root-cause analysis
to avoid future incidents. We never
saw IR managers considering impli-
cations for future design or business
opportunities. Moreover, incident re-
ports tended to be dispassionate and
did not include the rich understanding
gained by those handling the incident.

Accordingly, having management
take the role of informing design
would require a different approach.
Incident reports would need to be
much richer, thereby requiring ex-
pertise in the team for creating rich
descriptions. Alternatively, IR man-
agement could play a larger direct role
in incidents. Either way, there would
need to be a new pathway for IR
managers to inform design, perhaps
through meetings with product design
teams or by comprehensive reports.

IR at the Table
Perhaps the most extreme approach
to making a connection would be to

bring incident resolution to the table:
to include IR personnel on design
teams. This would begin to approxi-
mate participatory design, where us-
ers are deeply involved. This would
certainly bring the experience into
the design process, but the practi-
cal issues would be significant. For
example, design teams cannot in-
clude all IR personnel lest the team
become unmanageable. Also, the
more someone becomes involved, the
less time he or she has for IR. More-
over, it is unclear whether the design
team needs involvement from IR all
the time, and other kinds of contri-
bution will require other skills and
other knowledge.

One interesting practice emerging
in DevOps is called ChatOps, where
developers and deployment personnel
share ongoing chat sessions to speed
communication and foster situation
awareness.12 We admire the practice
in that context, and in small startup
organizations it might also connect
incident responders to designers and
developers. In sufficiently small or-
ganizations, such connections have
always been close anyway. In larger
and more established organizations,
however, we are doubtful that this
approach can scale well because it
could include incident responders as
well as business analysts, designers,
and developers.

Some IR groups do, however,
maintain ongoing chat sessions
among themselves to develop situa-
tion awareness across all incidents.
For example, they would briefly re-
lay issues arising or nonstandard so-
lutions that might help others. IR is
very much a team activity, and while
this intrateam communication has a
focus on understanding and resolv-
ing incidents, it may well be a very
valuable source of information for
improving products or services.

IR, Data Mining,
and Ethnography
Related to the management approach
described previously is the data-mining
approach. Several managers suggested
such an approach for analyzing incident
reports. Most analyses we saw involved
simple counts of various categories of
incidents by different dimensions: the
time of day, week, month, platform
involved, or impact. But there was a
desire for something more: something
that would somehow link together data
to identify patterns that might other-
wise escape notice. To accomplish this
in a way that might identify patterns
that go beyond faults would again re-
quire more extensive data collection or
reporting and the involvement of many
more factors relevant to the incident.
Automatic capture of vast amounts of
data is now possible: from applications,
from networks and other infrastruc-
ture, and from a variety of external
sources, such as social media.

We feel, however, that this is un-
likely to capture or reveal the kind
of specific contextual information
that becomes apparent to incident
responders. Data-driven deep learn-
ing may miss what is obvious in
person-to-person communication.
Moreover, for the responders to reflect
and document all this would be diffi-
cult. They already have strict obliga-
tions to record many details, and we
frequently observed incident respond-
ers working hard to record events even
after incidents were resolved. This
pressure was often intense when ser-
vice-level agreements were involved.
There was little or no time for reflec-
tion in the moment.

Of course, there are other sources
of data that can be captured auto-
matically. A wealth of data about the
patterns of usage is now available, es-
pecially where software is used online,
which is common now with software

 JANUARY/FEBRUARY 2019 | IEEE SOFTWARE 61

as a service. Aapo Koski and his col-
leagues discussed the opportunities for
monitoring and analyzing these data
to understand and improve UX.13 This
is a potentially valuable approach, but
we think that IR teams would provide
additional insight. These teams engage
with the users themselves and gain an
understanding of context and motiva-
tion that is difficult or impossible to
glean from log files.

If IR personnel are not expected to
join the design team, then the critical
issue is how to get their knowledge to
the design team. This suggests that
they document their knowledge or
that someone else should document
their experience, and the design team
should have access to this knowledge
as needed. Writing rich descriptions
of experience and working with oth-
ers to gain their experience require
significant skill and exper ience.
These activities also require signifi-
cant time, and spare time is scarce
among IR teams and management.

These skills and experience involve
ethnography, which has a long tradi-
tion in software development, especially
in interaction design and requirement
analysis. The role of research is also im-
portant. Helen Sharp and her colleagues
discussed the issues that arise in the
software context.14 They identified the
various roles for ethnography in the soft-
ware process, and what we propose is
an additional role. However, knowledge
of ethnographic methods is typically al-
ready present in the business-analysis
and product-design teams. On the busi-
ness side, interviewing has long been re-
garded as a core systems-analysis skill.
On the design side, it is a core element
of UX research. Normally, this kind of
work involves customers and users, and
of course this is always critical.

Applying these skills and prac-
tices also with IR personnel has some
advantages. First, IR personnel will

typically be more available, and many
will work for the same organization
as the researchers and design team.
Second, while IR personnel will not
understand the whole world of the cus-
tomer and user, they do have knowl-
edge from some critical pain points.
Finally, this approach has the potential
to change attitudes within IR, as the
work changes from preventing loss of
service to potentially adding value. IR
might be seen as a contributor to profit
rather than a necessary cost. In all these
cases, there is vast potential for new in-
sight as well as confirmation (or repu-
diation) of ideas already considered.

Looking Forward
There may well be new approaches
that combine some elements from all
of the strategies discussed here. In-
terestingly, social media may provide
some inspiration. Social media prac-
tices are already becoming common
in software development.15 Most
of these practices involve developer
teams and communities, but we sug-
gest that new approaches involving
IR experience are possible.

Practices that have arisen in social
media platforms seem relevant. Brief
messages are followed by a wide range
of messages from other users, creat-
ing an open and evolving classifica-
tion using hashtags that, in turn, help
identify trends worth further investi-
gation. We speculate that this model
might support one practical way of
connecting knowledge from IR to the
wider system design and development
team. Responders do not have time
to create extensive documentation,
but they might have time for brief
messages (tweets) that easily could
be seen, instantly or later, by many
others. While fixed classification sys-
tems do not cope well with emerging
issues in context, experience shows
people develop a flair for creating

and adapting hashtags. All this would
create situation awareness not only
among incident responders but also
for anyone in the organization.

Finally, social media has signifi-
cant potential for both immediate
and longer-term data analysis: trends,
correlations, and social connectivity.
Even so, social media analysis cannot
substitute for ethnographic and con-
textual studies. However, such analy-
sis can be a starting point to show it
is needed, if only perhaps in a mod-
est way. Of course, we do not suggest
using public social media platforms,
but a similar, smaller, intranet facility
might be transformative.

S ystem development is a col-
laborative process: Many
perspectives are necessary

for success. Throughout the short his-
tory of system development, several
collaborative partnerships have been
stressed: designers and users, clients
and developers, and developers and
operations. But no system is perfect,
and imperfections are often exposed
when incidents occur. The profession-
als who handle such incidents have a
wealth of knowledge. This knowledge
applied to resolving such incidents
also has the potential to identify new
opportunities. The renewed emphasis
on iterative design and development
means that, more than ever, such op-
portunities can be acted upon quickly.

We suggest that the best way to
make this happen is to bring this
knowledge into design and analy-
sis through an I2I process. Alfonso
Fuggetta and Elisabetta Di Nitto,
in their paper on the future of soft-
ware process, identified the need to
reconsider established boundaries:
“In general, the classical distinction
among design, implementation, and
operation tends to disappear or to be

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: PROCESS IMPROVEMENT

radically redefined.”16 We suggest IR
has a place in any new understand-
ing. We can use new approache s
to collaboration, such as the use of
social media, and the skills and ex-
perience of ethnographers, such as
business analysts or UX researchers.
Incidents should lead to not only res-
olution but also insight.

References
 1. A. Cockburn, Agile Software Develop-

ment: The Cooperative Game, 2nd ed.

Reading, MA: Addison-Wesley, 2006.

 2. P. Debois, “DevOps: A software revolu-

tion in the making?” Cutter Inform.

Technol. J, vol. 24, no. 8, pp. 3–4, 2011.

 3. C. Ebert, G. Gallardo, J. Hernantes,

and N. Serrano, “DevOps,” IEEE

Softw., vol. 33, no. 3, pp. 94–100,

2016.

 4. J. M. Brown, S. Greenspan, and R.

Biddle, “Incident response teams in

IT operations centers: The T-TOCs

model of team functionality,” Cogn.

Technol. Work, pp. 1–22, 2016.

 5. C. Agutter, ITIL Foundation Hand-

book, 3rd ed. London: U.K. Statio-

nery Office, 2012.

 6. S. Bødker, “Creating conditions for

participation: Conflicts and resources

in systems development,” J. Human–

Computer Interaction, vol. 11, no. 3,

pp. 215–236, 1996.

 7. W. W. Royce, “Managing the develop-

ment of large software systems,” in

Proc. IEEE WESCON, 1970,

pp. 1–9.

 8. C. Larman and V. R. Basili, “Itera-

tive and incremental development: A

brief history,” Computer, vol. 36, no.

6, pp. 47–56, 2003.

 9. D. A. Norman and S. W. Draper,

eds., User Centered System Design:

New Perspectives on Human-Com-

puter Interaction. Boca Raton, FL:

CRC Press, 1986.

 10. M. Fowler and J. Highsmith, “The

Agile Manifesto,” Softw. Develop.,

vol. 9, no. 8, pp. 28–35, 2001.

 11. K. Hedström, E. Kolkowska, F.

Karlsson, and J. P. Allen, “Value con-

flicts for information security man-

agement,” J. Strategic Inform. Syst.,

vol. 20, no. 4, pp. 373–384, 2011.

 12. G. V. Hulme. (2014, July 16). ChatOps:

Communicating at the speed of

DevOps. DevOps.com. [Online].

Available: https://devops.com

/chatops-communicating-speed-devops

 13. A. Koski, K. Kuusinen, S. Suonsyrjä,

and T. Mikkonen, “Implementing con-

tinuous customer care: First-hand ex-

periences from an industrial setting,” in

Proc. 42nd Euromicro Conf. Software

Engineering and Advanced Applica-

tions (SEAA 16), 2016, pp. 78–85.

 14. H. Sharp, Y. Dittrich, and C. R. B.

de Souza, “The role of ethnographic

studies in empirical software en-

gineering,” IEEE Trans. Software

Eng., vol. 42, no. 8, pp. 786–804,

2016.

 15. M.-A. Storey, L. Singer, B. Cleary, F.

F. Filho, and A. Zagalsky, “The (R)

evolution of social media in software

engineering,” in Proc. Future of Soft-

ware Engineering (FOSE 14), 2014,

pp. 100–116.

 16. A. Fuggetta and E. Di Nitto, “Soft-

ware process,” in Proc. Future of

Software Engineering (FOSE 14),

2014, pp. 1–12.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

ROBERT BIDDLE is a professor cross-appointed to computer

science and cognitive science at Carleton University. His

research interests include human factors in software design,

and his recent projects involve human issues in cybersecu-

rity. He received a Ph.D. in computer science from the

University of Canterbury. He is a Member of the IEEE and the

Association for Computing Machinery and a fellow of the New

Zealand Computer Society. Contact him at robert.biddle@

carleton.ca.

JUDITH M. BROWN is a research associate at Carleton

University’s School of Computer Science. She received a

Ph.D. in psychology with a specialization in human–computer

interaction from Carleton University. She has been a user-

experience researcher and is an advocate for agile methods.

She is a member of the Association for Computing Machinery

and the Special Interest Group for Human–Computer Interac-

tion. Contact her at mmjbrown@gmail.com.

STEVEN GREENSPAN is a lead research scientist at the

Strategic Research Labs at CA Technologies. His research

interests include human factors in decision making, IT opera-

tions, and visualization. He received a Ph.D. in experimental

(cognitive) psychology from the State University of New York at

Buffalo. Contact him at sgreenspan@gmail.com.

