
User Evaluation of Polymetric Views Using a
Large Visualization Wall

Craig Anslow
Stuart Marshall
James Noble

Victoria University of
Wellington, New Zealand

{craig,stuart,kjx}@ecs.vuw.ac.nz

Ewan Tempero
University of Auckland,

New Zealand
ewan@cs.auckland.ac.nz

Robert Biddle
Carleton University, Canada

robert_biddle@carleton.ca

ABSTRACT
There are few visualization techniques for displaying com-
plex software systems with large numbers of packages and
classes. One visualization technique is the System Hotspots
View, whose effectiveness has yet to be validated by any
empirical studies. We have conducted a user evaluation to
see whether participants of our modified System Hotspots
View using a large visualization wall can accurately identify
key measurements and comparisons in the underlying soft-
ware system. The results of our user evaluation indicate that
participants were able to effectively use our modified System
Hotspots View to explore the example domain: version 1.6
of the Java API. Our observations also indicate that there
are issues around interacting with the visualization wall.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human Factors; H.5.2
[Information Interfaces and Presentation]: User In-
terfaces—Evaluation/methodology

General Terms
Design, Human Factors

Keywords
Large displays, software visualization, user evaluation, visu-
alization wall

1. INTRODUCTION
Effective software visualization techniques help users un-

derstand one or several fundamental aspects of complex soft-
ware systems [6]. One aspect of software systems that would
benefit from visualization support is software metrics, such
as those that capture the static information around pack-
age, class or method size and interdependency [7]. Polymet-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOFTVIS’10, October 25–26, 2010, Salt Lake City, Utah, USA.
Copyright 2010 ACM 978-1-4503-0028-5/10/10 ...$10.00.

ric Views are techniques that can visualize these software
metrics data [9].

Our contribution is a user evaluation of a modified version
of one of the Polymetric Views: the System Hotspots View,
when applied to software metrics and when displayed on a
large visualization wall. Our results identify the accuracy of
the users’ mental model of the underlying software metrics
data, as constructed by interacting with the visualization.
As well as this, our results and discussion identify how the
large visualization wall impacted the users’ behaviour and
experience.

Our contribution is novel and useful. To our knowledge
there have been no published user evaluations for any of
the Polymetric Views. The specific case study we use in
our evaluation involves exploring the structure and size of
packages and classes from version 1.6 of the Java Standard
API on a large visualization wall.

The rest of this paper is organised as follows. Section
2 describes Polymetric Views. Section 3 outlines our user
evaluation, Section 4 presents the results, and Section 5 dis-
cusses the limitations. Section 6 gives an overview of related
work. In Section 7 we present our conclusions and discuss
directions for future work.

2. POLYMETRIC VIEWS
Lanza and Ducasse [9] describe Polymetric Views as vi-

sualization techniques to help understand the structure and
detect problems of a software system in the initial phases of
a reverse engineering process. The visualizations use metrics
data about the size of classes, packages, and their dependen-
cies. One of the views is the System Hotspots View.

2.1 System Hotspots View
The System Hotspots View uses the following software

metrics: Number of Instance Variables (NIV), number of
Weighted Methods per Class (WMC), and number of Lines
of Code (LOC) [7]. Classes from a software system are
grouped in the X-Y axis according to the size of the class.
For each class the width indicates the NIV and the height
indicates the number of WMC. Colour indicates the number
of LOC, the darker the class the more LOC it contains.

We modified the System Hotspots View as it is hard to
determine how many packages there are in a system, how
many classes are in packages, and the differences between
types of classes. Figure 1 illustrates our modified System
Hotspots View technique. We grouped classes by packages

down the Y axis and ordered the classes in the packages
alphabetically along the X axis. We added text labels for
packages. We coloured borders for classes to represent the
different kinds of classes: concrete classes have blue borders,
interfaces red borders, and abstract classes green borders.

Figure 1: Modified System Hotspots View. Exten-
sions: packages ordered in Y axis, text labels for
packages, classes grouped in packages, and coloured
borders for different kinds of classes.

Figure 2: Software visualization pipeline.

2.2 Software Visualization Pipeline
Figure 2 shows the pipeline of tools we used to create our

software visualizations. We first downloaded the Java Stan-
dard API 1.6 source code from the Sun Microsystems web
site1. Next we loaded the source code into a SciTools Un-
derstand Project and executed the metrics analyser feature
which exported the selected software metrics into a CSV
file. We filtered the files and then loaded them into a Pro-
cessing [13] sketch where we implemented our modified Sys-
tem Hotspots View technique. Upon execution of the sketch
large static images are generated which can then be viewed
on a large visualization wall.

3. USER EVALUATION
We wanted to find out how effective our modified System

Hotspots View technique is for visualizing large packages
and classes using a large visualization wall.

3.1 Procedure
We asked participants to complete some tasks with our

modified System Hotspots Views by answering questions

1http://download.java.net/jdk6/source/

Figure 3: Visualization wall.

about the size of packages and classes in the Java Stan-
dard API 1.6. The questions were aimed at discovering how
accurately participants perceived the absolute size and rel-
ative differences of elements in the System Hotspots View.
These questions were not designed to be representative soft-
ware comprehension tasks. The focus was on how effectively
the System Hotspots View represented the underlying data
rather than on how useful the data was.

The Java Standard API 1.6 was selected as a case study
as it is a large commonly used software system. There was
one System Hotspots View for each of the three top level
packages in the API defined as java, javax, and org, see
Figure 4. For some of the questions we displayed an ad-
ditional zoomed in view of a package. The Java Standard
API 1.6 contains over 200 packages, nearly 5800 classes, 9500
variables, nearly 50,000 methods, and 523,500 lines of code.

The System Hotspots Views were displayed on a large
visualization wall. Figure 3 illustrates the visualization wall
which has 12 screens arranged 4 (width) x 3 (height). Each
individual display is 2560 x 1600 pixels for a total display
of 10240 x 4800 pixels. The width of the visualization wall
is 2800mm and the height is 1400mm. The bottom edge of
the wall is 650mm off the ground. The visualization cluster
software is controlled by Rocks2 and the user interface by
the Scalable Adaptive Graphics Environment (SAGE)3.

2http://www.rocksclusters.org
3http://www.sagecommons.org

Each participant was given an information sheet about
the evaluation, consent form to sign if they agreed, and
completed a pre-study questionnaire to find out their Java
software development experience. With each participant’s
consent we video recorded their actions when completing the
tasks. We asked participants to think aloud when answering
the questions so that we could capture their thoughts about
their actions, perceptions, and expectations regarding the
application’s interface and functionality. Getting the users
to talk about their actions and thoughts enabled us to gain
insight into how each user views the computer system, iden-
tification of their misconceptions, and what parts of the in-
terface caused the most problems. Measurement of the user
tasks was done by recording the time taken to answer the
total number of questions and any errors.

At the end each participant completed a post study ques-
tionnaire. The questionnaire asked for participants opinion
on the strengths and weaknesses of the System Hotspots
View and the visualization wall. We asked participants how
effective they thought the System Hotspots View was for
completing the user tasks on a scale of 1–10 where 1 was
“very ineffective” and 10 was “very effective”.

3.2 Participants
We conducted evaluations with 14 participants who were

a convenient sample of academic, graduate, and undergrad-
uate students from our department. 11 participants were
male, three were female. Most participants were aged in the
range 25–29. All participants except one had a bachelors
degree, two had PhDs, the rest were studying towards mas-
ters or PhD degrees. 10 participants were undergraduate or
post-graduate students, two participants were professional
software developers and the other two participants were a
university professor and a research fellow.

3.3 User Tasks
Each participant completed all the tasks using the same

set of visualizations. The participants recorded their an-
swers in a web form and we recorded the time it took to
complete the tasks. The first six questions related to pack-
ages and the remaining five to classes.

1. How many packages are there in there in the Java API?

2. What is the biggest package in the Java API?

3. How many classes are there in the java.math package?

4. What package(s) in the Java API contain only inter-
faces?

5. What package(s) in the Java API contain no classes,
abstract classes, or interfaces?

6. What packages contain classes that have the same num-
ber of attributes as methods?

7. What is the biggest class (including abstract classes
and interfaces) in the Java API?

8. What is the biggest interface in the Java API?

9. What is the biggest abstract class in the Java API?

10. How much bigger is the java.awt.Component class than
the java.awt.Container class?

11. How much bigger is the java.awt.Component class than
the java.awt.Window class?

Figure 4: System Hotspots View of the top level
java package of the Java Standard API 1.6.

Table 1: User tasks results. Numbers (rows 1–11) are percentages. Expertise and effectiveness are self
assessed by participants. Ranking is the mean percentage of user task questions.
Participant id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mean
1. Number packages 89 90 89 74 26 90 62 91 90 64 90 90 90 95 80
2. Biggest package 55 55 100 100 55 100 100 55 100 55 55 55 55 100 74
3. Classes in Math 100 78 90 89 89 89 89 78 100 89 89 67 78 89 87
package
4. Packages only 69/2 77/0 69/0 38/0 15/0 69/3 38/0 54/1 69/0 46/2 69/0 69/5 62/1 62/0 58/1
contain interfaces
5. Packages no classes 50/1 100/0 0/0 0/0 0/2 0/0 50/0 50/3 100/0 0/0 100/0 50/0 50/0 100/0 46/0
6. Same number of 44/4 33/11 28/5 28/0 6/0 72/2 22/1 28/7 44/5 33/1 28/1 17/1 22/3 56/11 33/4
attributes & methods
7. Biggest class 100 100 100 34 100 100 100 100 100 100 100 100 100 100 95
8. Biggest interface 72 82 82 82 82 82 82 100 82 82 82 82 82 100 84
9. Biggest abstract class 57 100 100 100 100 100 100 100 100 100 18 100 100 100 91
10. Comp. vs. Cont. 44 0 28 88 91 55 31 55 37 37 22 73 91 91 53
11. Comp. vs. Wind. 73 0 73 86 69 97 48 86 73 73 53 69 69 69 67

Time taken (mins) 32 25 23 22 18 20 22 20 22 10 26 21 18 30 22
Expertise 7 3 2 7 9 9 6 5 4 6 7 4 3 9 5.8
Effectiveness 5 6 7 7 7 8 8 8 4 7 5 3 8 7 6.4
Ranking 68 65 69 66 58 78 66 73 82 62 73 64 74 89 71

4. RESULTS
We first report the results from the user tasks, then dis-

cuss the strengths and weaknesses of our modified System
Hotspots View and the visualization wall.

4.1 User Tasks
Table 1 and Figure 5 present the results from the user

tasks. The table shows the percentage correct for each par-
ticipant. The percentage is calculated by the total number
of correct answers for that question (e.g. X packages correct
out of a total of Y * 100), total metric values of one entity
divided by the total metric values of the biggest entity (e.g.
NIV, WMC, LOC of package X divided by NIV, WMC, LOC
of the biggest package Y * 100), or the difference in size of
entities (e.g. biggest class Y divided by the smaller class X *
100). For questions 4–6 there is an additional number which
shows the number of incorrect answers the participant gave
(e.g. participant 1, Q4, 69/2, 69% correct and 2 answers
incorrect). The boxplot shows distributions for each task
where the mean is represented by a heavy horizontal bar,
the inner quartiles as a box, the outer quartiles as whiskers,
and any outliers as small circles.

4.1.1 User Tasks Results
1. Number of packages. There are 203 packages in

the Java Standard API 1.6. The closest participant (14)
answered with 193. Most of the participants gave an answer
between 180-183. Some gave the following: 150, 125, and
52.

2. Biggest Package. The biggest package is javax.swing.
Eight participants said that java.awt was the biggest and six
participants said javax.swing was the biggest.

3. Number of classes in java.Math package. There
are nine classes in the java.Math package. One participant
answered with 10. Two correctly said nine classes, seven
said eight, three said seven, and one said six classes.

4. Packages that only contain interfaces. There
are 13 packages that contained only interfaces. Nine of the
participants gave an answer between eight and 10. About
50% of participants gave incorrect additional packages.

5. Packages that contain no classes. There were only
two packages that contained no classes, javax.lang.model
and javax.rmi. Four participants got both packages, five

participants identified one of the packages, and the remain-
der participants did not identify any.

6. Packages with same number of attributes as
methods. We classified 18 packages that had classes with
the same number of attributes as methods. We disregarded
classes with less than 10 attributes and methods as they
are hard to identify. All participants recognized that they
should be looking for square boxes. Only two participants
got more than 50% of the packages. The rest of the par-
ticipants identified only some of the most obvious packages
that met this criteria.

7. Biggest class in the Java API. The biggest class
is Component from the java.awt package. 13 of the partici-
pants said Component while the remaining participant said
Window also from the java.awt package.

8. Biggest interface in the Java API. The biggest
interface is CSS2Properties from the org.w3c.dom.bootstrap
package. Two participants got this correct. 11 participants
said that the second biggest interface, DatabaseMetaData
from the java.sql package was the biggest interface. One
participant said that the third biggest interface, ResultSet
from java.sql was the biggest. The DatabaseMetadata class
has 61 attributes while CSS2Properties has zero. This made
DatabaseMetadata take up significantly more area on the
screen while CSS2Properties is just a single long red line.

9. Biggest Abstract Class in the Java API. The
biggest abstract class is java.awt.Component. 12 partici-
pants said Component, one said Window from java.awt, and
the remaining said AbstractButton from javax.swing.

10. Component versus Container. For this question
we provided participants a scaled up image of the java.awt
package. When considering NIV, WMC, and LOC, the Com-
ponent class is 2.2 times bigger than the Container class.
Participants gave a very wide range of answers from 2–10
times bigger as evidenced by the large box and whisker plot
for question 10 in Figure 5.

11. Component versus Window. Again we provided a
scaled up image of the java.awt package. When considering
NIV, WMC, and LOC, the Component class is 2.9 times
bigger than the Container class. Participants were more
accurate for this question compared with 10 and answers
ranged from 2.5–6 times bigger as evidenced by a condensed
box and whisker plot for question 11 in Figure 5.

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10
0

Question Response Ranges Expressed as Percentages

Figure 5: User tasks results, boxplot. 11 questions and 14 participants.

4.1.2 Discussion
Time, Expertise, Effectiveness, and Ranking
The time for the user tasks ranged from 10 to 32 min-

utes with a mean of 22 minutes. 12 of the 14 participants
program in Java. Eight of the participants use version 1.6,
two use 1.5, and one was unsure what version they used.
The mean expertise of the participants with the Java API
on a scale of 1–10 where 1 is “novice” and 10 is “expert”
was 5.8. The participants’ most frequently used packages
were: java.util, java.lang, java.io, java.math, java.awt, and
javax.swing. The most frequently used classes were: String,
Scanner, Collections, and ArrayList. Similarly the mean ef-

fectiveness of the System Hotspots View was 6.4 which shows
that the participants thought that the System Hotspots View
was “effective” to answer the questions but not “very effec-
tive”. Figure 6 shows the distributions of the scores of the
participants in completing the user tasks. All participants
scored over 50% accuracy and there was a wide divergence
in the rankings.

Identifying and Counting. The System Hotspots View
was very good for users to identify, count, and estimate num-
bers of entities in the Java API. The boxplot in Figure 5
shows small plots that have a mean greater than 80% for
questions 1, 3, 7, 8, 9. For question 1 there is one outlier

Figure 6: Distribution of the participant’s scores.

where participant 5 has just guessed the answer. For ques-
tion 3 nearly 90% of the participants got this correct.

Questions 7–9 have condensed box and whisker plots which
shows that the participants got the same answer for the
question with a couple of outliers each. For question 7,
95% of the participants answered this correctly. Partici-
pant 4 said that Window was the biggest class, hence the
outlier below 40%, but perhaps that was a typographical
error when the user was entering the data into the web
form. For question 8 there is one outlier at the top which
represents the two participants who got the answer cor-
rect. Since the DatabaseMetadata class took up more area
than the CSS2Properties class participants perceived that
DatabaseMetadata was bigger. For question 9, 91% got this
answer correct. The two participants who got it wrong failed
to see the green border for the Component class.

We believe participants would have done much better on
question 2 if we had of had the images in Figure 4 to the
same scale as the javax.swing package is significantly bigger
than the java.awt package.

Filtering Information. The System Hotspots View is
less good for filtering information or finding a subset of in-
formation. The main problem with answering questions 4
and 5 is that some of the information the participants had
to find in the visualizations was very small.

For question 4 users had to list packages that contained
only interfaces and they often included additional packages
which were all concrete classes. The concrete classes in
these packages were really small and hard to see. The most
amount of incorrect packages were five by participant 12.

For question 5 the participants had to find packages that
contained only a package label with no classes. This was a
hard task as these packages were both small. There were
only two packages, javax.lang.model and javax.rmi. Partici-
pants either got both, one, or none of them. This is evident
in the boxplot were there is a value at 100, 50, and 0. In ret-
rospect the underlying data for this question was incorrect.
The javax.lang.model package does not have any classes but
has one enum and one annotation which we don’t repre-
sent in our System Hotspots View, but it is something we
could easily remedy. Likewise javax.rmi actually has three
classes but the version of the visualizations we were using
were an earlier version which didn’t include this information.
Nonetheless we believe these two minor aspects did not have
an affect on the ability of the participants for this task as
they did not need to know about the discrepancies with the
underlying data to answer the question.

Comparing. The System Hotspots View is worst for
comparing numbers of filtered entities. Question 6 is the
task that participants did the worst on where the boxplot
shows the mean about 30%. Only two participants, 14 and 6
got more than 50% of the packages. Of the correct packages
participants identified the most obvious ones, but when it
came to some of the smaller packages they could not com-
pare the number of attributes and methods very well as the
images were too small for them.

When comparing classes the participants performed worse
for question 10 than 11. The boxplot shows that question
10 has a much larger range of answers than question 11. In
question 10 eight of the participants and in question 11 seven
said that the Component class was much bigger than it ac-
tually was. One participant said that there was no difference
in size between the classes, but they must have interpreted
the question incorrectly. For these questions some of the
participants raised the point that the LOC for each class
was hard to determine as these classes were all in the same
range so they could not tell how many more LOC one class
had than another.

4.2 System Hotspots View

4.2.1 Strengths of the System Hotspots View
Overview. Many participants stated that the visualiza-

tions created a large overview of the system which enabled
them to get a quick understanding of the size of the system
as a whole and the characteristics of packages and classes.

“Quick understanding of gross characteristics plus
ability to focus in.” - Participant 2

“Good overview and overall understanding of packages.”-
4

“Quick to read not cluttered with data.” - 7

“Gives a good summary of the information in an
easily accessible way does not require any knowl-
edge of Java to use.” - 13

“Good at showing multiple dimensions, and good
organisation of those mediums; number of at-
tributes and methods are more important.” - 14

Identifying. Participants thought that the System Hotspots
View easily helped them to identify large packages and classes,
interfaces, and outliers. There is evidence for this as par-
ticipant answers to questions 2 and 7-9 were mostly correct.
Questions 7-9 show that participants got over 80%. While
for question 2 most would have got this answer correct but
the images were not to scale.

“The visualizations are also helpful to spot rel-
ative sizes and anomalies (very large or oddly
shaped classes).” - 3

“Outliers are easy to spot (only interfaces, many
attributes, many methods).” - 4

“Interfaces are easy to spot.” - 5

“Easy to spot excessively large classes.” - 11

Size. Participants thought that the characteristics of the
System Hotspots View made it easy to understand the size
of packages and classes. All participants quickly identified
the largest packages and classes for questions 2, and 7-9.

“It’s easy to see which packages have big packages
or lots of packages.”- 1

“Height and width give a quick feel for the num-
ber of members and hence size.” - 5

“They showed comparative sizes, and the types
of the major classes in the Java API.” - 6

“Gives you an overall feeling on the size of Java
packages.” - 11

“Good for looking at the sizes of class.” - 12

Colour. Some participants commented on the use of
colour to identify entities in the system. The border colours
for classes made it easy for participants to identify the ap-
propriate classes for questions 7-9.

“The use of colors helped me to quickly spot the
different types of classes.” - 3

“Had color.” - 7

“Diagrams and colours are better than words and
big diagrams are easier to see.” - 8

4.2.2 Weaknesses of the System Hotspots View
Comparing. Participants thought that it was hard to

compare the relative size of packages and classes. Partici-
pants struggled with comparing the size of entities. Ques-
tions 10 and 11 are evidence of this as participants gave a
wide range of answers.

“One can tell comparatively which class has more
methods or which has more attributes, but they
couldn’t exactly tell how many more of these
methods or attributes they have.” - 1

“The relative sizes between the three main visual-
izations were not correct. So comparing between
these three images was difficult. It was also diffi-
cult that the order chosen was the names of the
packages by alphabet, this did not help with any
of the questions.” - 3

Large Packages. Participants thought that the System
Hotspots View was good for counting classes in small pack-
ages but for large packages it was hard to tell how many
classes it contained and what kinds of shapes some classes
were. Participants struggled with identifying small classes
that were boxes as required for question 6.

“The visualization seems less useful when there
are too many classes in a package, as you can’t
actually tell the shape of a class.” - 11

“Hard to ‘query’ the diagrams to count the num-
ber of objects of a certain type.” - 12

“You cannot tell how many classes there were in
large packages.” 14

Data Manipulation. Participants wanted interaction
features for manipulating the data in the System Hotspots
Views such as querying, sorting, and filtering. These fea-
tures would have helped participants to answer all the ques-
tions more effectively.

“Make it easier to see the packages with small
classes, have some kind of a scale so you can tell
the actual number in each entity.” - 1

“Interaction with the metrics (such as being able
to sort) would be very nice!” - 3

“Interaction should provide more detail, e.g. en-
tity names, LOC, and there should be ways to
query and sort, e.g. by color or height.” - 5

Scale. All the participants struggled with the non-uniform
scale of the three visualizations. This affected the answer to
question 2 where participants would have almost certainly
all the got the correct answer.

“Make the images equal size.” - 3

“All packages have to be scaled relative to the
others, packages in the middle section are smaller
scaled than others.” - 4

“Some of the images were too small to make out
the shapes and kinds of classes.” - 6

Colour. A few participants raised issues about the colour
encoding and fonts used for the text. They thought that
the green and blue borders for abstract classes and concrete
classes were hard to identify when the classes were large
and had a black shading. This affected participant answers
to question 9 which had the same answer to question 7.
However, the red borders for interfaces clearly stood out for
question 8.

“Don’t use bold font, don’t use a serif font on a
screen.” - 3

“Some of the classes are tiny so it is hard to see
colours and borders at that resolution.” - 5

“Borders hard to see (green, blue).” - 10

One participant raised the issue that he was red-green
colour blind.

“Relied on red / green one-pixel borders, which
were hard for me to look at.” - 12

Metric Shading. The shading of the LOC was also con-
fusing for some participants when determining the size of a
class as it was not clear what the actual value for this met-
ric was for the class they were inspecting. Having a larger
scale of the LOC shading would have helped participants to
answer questions 10 and 11 better.

“Shading is capped (1000 LOC or 100,000 LOC
hard to tell) absolute number of things hard to
get, relative numbers works better.” - 4

“The shading as an indicator for size is hard to
evaluate, and it conflicts with my desire for size
to be indicated by area.” - 5

Representation and Encoding. A couple of partici-
pants quite often referred back to the technique description
to remember the meaning of the dimensions and colour en-
coding.

“Had to keep referring to the key to remember
what dimension or color represented what aspect.
Have the key visible on the screen and be able to
hide the smaller classes below a threshold.” - 7

“It is easy to confuse the width of a package to
be the number of classes in it. The width instead
shows the number of attributes in a package.” -
14

4.3 Visualization Wall

4.3.1 Strengths of the Visualization Wall
Display Size. All participants enjoyed the large display

size and the ability to display large amounts of information.
This resonates with the findings by Andrews et al. [1].

“ Allows all the data to be seen at once, makes it
easier to find the classes that stand out easier.”
- 1

“It was big!” - 9

Physical Size. Several participants commented that it
was useful to physically walk around to use the wall. This
resonates with the findings by Ball et al. [2].

“No scrolling, just walking about.” 3

“It was big enough to walk around and point
things out on an eye level, and could compare
two sizes quite easily.” - 6

“Resolution excitement when walking around the
screen.” - 9

“Large display estate and can move around.” -
11

“Step back to see a bigger picture, step close to
see detail. ” - 12

Concentration. Two participants felt the visualization
wall helped them to concentrate better when answering these
kinds of questions.

“It is ‘stimulating’ to move about while looking
at metrics (or any type of documentation for that
matter) in the sense that you are more concen-
trated on the task because you can move freely
- are not confined to a single position such as
sitting on your chair.” - 3

“I could see more data at once, which lessened re-
quirements for me to remember stuff that wasn’t
visible.” - 5

4.3.2 Weaknesses of the Visualization Wall
Interaction. This was the first time for all participants

using a large visualization wall. Of biggest concern with the
visualization wall was that there was a lack of interaction
with the static images. Figure 7 shows some of the tech-
niques (also including hands and paper) participants used
to compare data in the System Hotspots View. Most of the
participants wanted to be able to drag images around the
screen, re-size and scale images, and zoom in on details.

“I would like manual zoom control to focus in on
details.” - 2

“You can’t interact with the visualization.” - 11

“Ability to drag images around to compare, click
on them while looking at them.” - 12

“Provide an easy way to re-size the areas you are
looking at.” - 13

The monitors in the visualization wall emitted a large
amount of heat. Participants were tempted to touch the
monitors to interact with the data in the visualizations. We
had to make them aware that they were not touch screens.

Physical Height. The height of the wall posed problems
for some participants as they were shorter than others so it
made it hard for them to read the information on the top
row of screens, likewise for very tall participants who had to
bend down to see the information on the bottom row, see
Figure 7.

“Some diagrams higher than me.” - 8

“The height of the bottom screens not good for
standing but height of top screens is good.” - 13

Interior Bezels. The bezels around the outside of each of
the monitors created problems for some participants trying
to understand information that spread from one screen to
another. Bi et al. [4] claim that interior bezels do not affect
visual search nor error rate; however, splitting objects across
bezels is detrimental to search accuracy.

“Hard to see diagrams that spread across screens.”
- 8

“The gaps between the screens caused issues with
viewing the information.” - 9

“Bezel makes it hard to see the image on the
crossover height of the bottom screens.” - 13

5. LIMITATIONS
Results. We conducted our user evaluation with a small

number of participants. Future studies should involve a
greater number of participants and a significant number of
industry professionals. We did not vary the order of the
questions which might have introduced a learning bias.

Scale of Visualizations. Due to limitations with our
implementation and the SAGE software used to drive the
visualization wall all the images of the three top level pack-
ages were not at the same scale. This made it difficult for
participants when comparing the size of packages and classes

(a) Hands (b) Fingers

(c) Pen (d) Bending

(e) Crouching (f) Kneeling

Figure 7: Participants interacting with the System
Hotspots Views on the visualization wall.

and counting packages and classes in packages. The height
of the largest image was greater than the height of our visu-
alization wall. Once this image was scaled down the image
was too small to properly view on the visualization wall.

Interaction. There were no user controls for participants
to be able to manipulate the data in the visualization such
as the ordering of classes or filtering out any information.
The only interaction with the visualizations was controlled

by the observer of the user evaluation who moved the images
around the screen and at the participant’s request. The in-
teraction was controlled on a machine sitting a couple of me-
tres back from the visualization wall. The actions that were
available were repositioning and minimal scaling of the im-
ages using a mouse. These two important interaction tasks
were quite cumbersome. The limited control screen didn’t
actually show the details of the images, only the outline.
Making positional adjustments to the image had a slight de-
lay effect with re-displaying the image. The images were
large but not high resolution and the quality of the image
was severely affected when the images were scaled larger or
smaller.

Visualization Wall. Some of the participants thought
that the height of the visualization wall too tall for them
or that they had to bend down or crouch to view the infor-
mation, see Figure 7. To alleviate this issue we provided a
chair for tall people to sit on when they required viewing
the bottom row of monitors. We didn’t provide a stepping
block for the shorter participants but this would have been
a useful asset.

We alleviated the interior bezel issue by correcting the
images with the SAGE software which made an image flow
from one screen to another seamlessly. However, some of the
participants still had difficulties determining what informa-
tion was being shown on which display.

Measurement. Time measurements were taken using a
manual stop watch once participants were given the question
sheet and after they had the System Hotspots View tech-
nique explained to them. Some typed their answers into the
web form as they went while the others wrote their answers
on the sheet provided and then entered their answers into
the web form on completion of the tasks. Therefore the time
measurement was not as accurate as it could be.

6. RELATED WORK
To our knowledge there have been no published user eval-

uations for any of the Polymetric Views. We have not seen
any System Hotspots Views that contain more than 1,000
classes published in the literature. Numerous tools support
Polymetric Views [9].

Code Crawler is a language independent reverse engineer-
ing tool which was the first tool to use Polymetric Views
and has since been integrated as a plugin to Eclipse [10].
CodeCity is a tool that stems from Code Crawler and uses
a 3D city metaphor based on Polymetric Views to display
additional kinds of metric information such as disharmony
maps which focus on design flaws [17, 18]. The Mondrian
toolkit aims to bring the Polymetric Views closer to the code
by extending existing programming languages to use embed-
ded scripts in their programs to create visualizations [12].
Bergel et al. [3] extended the Mondrian toolkit by display-
ing dynamic information about CPU consumption in Class
Blueprints. Softwarenaut uses Polymetric Views but focuses
on the dependencies between modules [11]. Lagrein is a tool
that supports a number of Polymetric Views and augments
them with software requirements and change history infor-
mation [8].

Large visualization walls are rare and very little work has
been done to investigate how they might be used in the
context of information or software visualization. Yost et
al. [19] conducted an evaluation to explore the effect of us-
ing large visualization walls for information visualization.

Their results showed that performance on most tasks was
more efficient and sometimes more accurate because of the
additional data that could be displayed, despite the physi-
cal navigation. Andrews et al. [1] conducted a study which
demonstrated how large displays support sensemaking. Ball
et al. [2] identified that physical navigation helped improve
user performance with large displays. Bi et al. [4] discuss
how interior bezels affect user behaviours, and suggest guide-
lines for effectively using tiled-monitor large displays and
designing user interfaces suited to them. Other researchers
have investigated large displays for daily desktop computing
tasks [5] such as navigation tasks [16] and window and task
management [14].

7. CONCLUSIONS
We have conducted a user evaluation to measure the ef-

fectiveness of a modified System Hotspots View technique
for software visualization using a large visualization wall. In
summary, our modified System Hotspots View technique is
very good for users to identify, count, and estimate numbers
of entities in a software system. The technique is less good
for filtering information or finding a subset of information.
The technique is worst for comparing numbers of filtered
entities.

Future work is to create a comprehensive and interac-
tive software visualization tool. We will implement other
Polymetric Views [9] such as System Complexity and Class
Blueprint, provide user controls for tasks like filtering, query-
ing, and sorting, and augment the visualizations with docu-
mentation such as Javadoc.

The large visualization wall supported displaying large
amounts of data at once, however it lacked effective tech-
niques for user interaction. Some issues that arose from the
techniques were the lack of user controls for querying, sort-
ing, and filtering.

Ben Shneiderman [15] claims that gigapixel displays will
be useful for some tasks, but innovative interface design is
likely to have higher payoffs and wider usage. Given this
we are also interested in exploring software visualization in
the context of multi-touch tables and walls. We will conduct
user evaluations with our multi-touch software visualizations
to investigate how collaboration and interactivity affects the
usability of Polymetric Views.

Acknowledgments
This work is supported by the Software Process and Product
Improvement project through the New Zealand Foundation
for Research Science and Technology, as well as a Telstra-
Clear scholarship. Thanks to Roger Cliffe for technical as-
sistance with the visualization wall and user evaluation.

8. REFERENCES
[1] C. Andrews, A. Endert, and C. North. Space to think:

large high-resolution displays for sensemaking. In
Proceedings of CHI, pages 55–64. ACM, 2010.

[2] R. Ball, C. North, and D. A. Bowman. Move to
improve: promoting physical navigation to increase
user performance with large displays. In Proceedings of
CHI, pages 191–200. ACM, 2007.

[3] A. Bergel, R. Robbes, and W. Binder. Visualizing
dynamic metrics with profiling blueprints. In
Proceedings of TOOLS Europe, 2010.

[4] X. Bi, S.-H. Bae, and R. Balakrishnan. Effects of
interior bezels of tiled-monitor large displays on visual
search, tunnel steering, and target selection. In
Proceedings of CHI, pages 65–74, 2010.

[5] X. Bi and R. Balakrishnan. Comparing usage of a
large high-resolution display to single or dual desktop
displays for daily work. In Proceedings of CHI, pages
1005–1014. ACM, 2009.

[6] S. Diehl. Software Visualization: Visualizing the
Structure, Behaviour, and Evolution of Software.
Springer Verlag, 2007.

[7] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing,
1998.

[8] A. Jermakovics, M. Scotto, A. Sillitti, and G. Succi.
Lagrein: Visualizing user requirements and
development effort. In Proceedings of ICPC, pages
293–296. IEEE, 2007.

[9] M. Lanza and S. Ducasse. Polymetric views-a
lightweight visual approach to reverse engineering.
IEEE Transactions on Software Engineering,
29(9):782–795, 2003.

[10] M. Lanza and R. Marinescu. Object-Oriented Metrics
in Practice. Springer Verlag, 2005.

[11] M. Lungu and M. Lanza. Softwarenaut: cutting edge
visualization. In Proceedings of SoftVis, pages
179–180. ACM, 2006.

[12] M. Meyer, T. Girba, and M. Lungu. Mondrian: An
agile information visualization toolkit. In Proceedings
of SoftVis, pages 135–144. ACM, 2006.

[13] C. Reas and B. Fry. Processing: A Programming
Handbook for Visual Designers and Artists. MIT
Press, 2007.

[14] G. Robertson, M. Czerwinski, P. Baudisch, B. Meyers,
D. Robbins, G. Smith, and D. Tan. The large-display
user experience. IEEE Computer Graphics
Applications, 25(4):44–51, 2005.

[15] B. Shneiderman. Extreme visualization: squeezing a
billion records into a million pixels. In Proceedings of
SIGMOD, pages 3–12. ACM, 2008.

[16] D. S. Tan, D. Gergle, P. G. Scupelli, and R. Pausch.
Physically large displays improve path integration in
3d virtual navigation tasks. In Proceedings of CHI,
pages 439–446. ACM, 2004.

[17] R. Wettel and M. Lanza. Visualizing software systems
as cities. In Proceedings of VISSOFT, pages 92–99.
IEEE, 2007.

[18] R. Wettel and M. Lanza. Visually localizing design
problems with disharmony maps. In Proceedings of
SoftVis, pages 155–164. ACM, 2008.

[19] B. Yost, Y. Haciahmetoglu, and C. North. Beyond
visual acuity: the perceptual scalability of information
visualizations for large displays. In Proceedings of
CHI, pages 101–110. ACM, 2007.

